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GEODETIC PROBLEMS AND SATELLITE ORBITS

W. H. Guier

LECTURE I

INTRODUCTORY REMARKS

The title for this series of five lectures is "Geodetic Problems

and Satellite Orbits". Clearly, when tracking satellites, our only real

knowledge that certain problems exist in the area of geodesy is through

a study of the satellite tracking data, noting that present knowledge of

geodesy is inadequate to theoretically describe and/or predict the detailed

time dependence of the received tracking data. For this reason, the

principal topic to be discussed in this series is the effect of geodetic

errors on the time dependence of satellite tracking data as received by

by a tracking station located on the surface of the Earth from a near-earth

satellite. These geodetic errors fall into two categories, geodetic errors

which effect the location of the tracking station on the surface of the

Earth and geodetic errors which effect the motion of the satellite (and

therefore its position at some given value of the time). Consequently,

subsidiary topics which shall be discussed are:

lo

o

Methods for specifying the motion of a tracking station in

inertial space, given the usual geodetic measurements available

for a point on the earth's surface,

The motion of a near-earth satellite when influenced by the various

harmonics of the earth's gravity field (geopotential), and
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o The functional dependence of various types of tracking data

upon the trajectories of the station and satellite in inertial

space.

These topics do not cover many problem areas relating to

satellite motion and the accurate reception and tabulation of tracking

data. Such problem areas, while important from the standpoint of

achieving accurate prediction of the trajectories of satellites, can

reasonable well be divorced from the geodetic problem areas. Consequently,

this series of lectures will assume a rather narrow definition of the word

geodetic problems - namely problems associated with the science of determin-

ing the shape and size of the Earth and its gravity field.

Fundamentally, the procedure of determining the orbit of a

satellite can be considered as the process of assuming the satellite to

be under the influence of a known force field and then using the tracking

data to determine which solution to the equations of motion one should

choose. By this I mean the following. Assuming for the moment that the

forces acting on the satellite are known, an infinity of solutions to the

differential equations of motion exist until boundary conditions are

imposed - such as values for the initial position and velocity of the

satellite at some chosen epoch. The tracking data is used to determine

as accurately as possible these initial conditions. Consequently, errors

in satellite orbits can arise from errors in the forces that act on the

satellite and errors in the computed boundary conditions. Within the

area of interest of these lectures, the geopotential is considered as
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the sole source of error in the satellite forces, and tracking station

location errors the sole source in obtaining errored boundary conditions.

In principle, errors in the location of tracking stations can

be discussed entirely separate from errors in the satellite forces.

However, in practice_ complete separation of the two sources of errors

cannot be made. The primary reason is that the accurate determining of

the station location depends in practice upon a knowledge of the geopotential

(near the earth's surface) and consequently errors in the geopotential

introduce errors in both the station and satellite trajectories in

inertial space. Another important reason is because, to zeroth order,

satellite tracking data provides information on the position and/or

velocity of the satellite relative to that of the station. Consequently,

it is frequently difficult to accurately separate orbit errors into those

directly related to the station position and those directly related to

the satellite motion.

It can be seen from the above discussion that central to the

determination of station positions and satellite orbits is an accurate

specification of the earth's gravitational force field, and I shall now

briefly discuss a representation for the gravity field of the Earth. We

chose the sign convention such that the force is given by + grad U, where

U is the gravitational potential of the Earth. It is common to express

this potential as an expansion in surface harmonics so that:

R n

K [1 + E (_9_) [Jn P (sin qo)U(R, % X) n
n=2

+ E pm (sing) (Cnm cos m k + S TM sin m k)]]
m= l n n

/

-" i'_3
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where

K = gravity force constant (km3/sec2),

R = mean equatorial radius of Earth (km),
O

R = geocentric radius (km),

= geocentric latitude (rad),

k = geocentric longitude (rad),

and where

m

l_n(Z ) = (i - Z2) _ dmm Pn (Z)"

dZ

The geocentric coordinates R, _, and k have their origin located at the

center of gravity of the Earth. The geocentric latitude is measured

from a plane which passes through the earth's C.G. and is normal to the

earth's spin axis. The geocentric longitude is measured positive eastward

from the plane containing the spin axis and a special marker at the

Observatory in Greenwich, England - the so called Greenwich meridian.

Since the origin of this coordinate system is at the center of gravity

i = S I 0. To the accuracy that
of the Earth, it follows that Jl = CI i =

we will consider in these lectures we may assume that there is sufficient

energy dissipation that the earth's spin axis is the principal axis of

the largest moment of inertia of the Earth and therefore we may assume

that the spin axis passes through the earth's C.G. Consequently, in the

• i i
above expansion for the geopotential we also may take C 2 = S2 = O. Finally,

to the accuracy which we shall consider, we may assume that the earth's

gravitational field is time independent and that the spin axis, equatorial
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plane, and Greenwich meridian are fixed with respect to the crust or

surface of the Earth. Except for some relatively minor considerations

when discussing the geoid, we shall not be interested in the gravitational

field below the physical surface of the Earth.

Corresponding to the geocentric coordinates R, _, and _ there

is a natural right-handed cartesian coordinate system fixed with respect

to the Earth. This is shown in Figure i. The Greenwich meridian is the

X-Z plane and the equatorial plane coincides with the X-Y plane.

Because of the earth's rotation it is not convenient to describe

the satellite motion in a coordinate system which is fixed with respect

to the earth's crust. A very natural coordinate system for the satellite

motion is one which has its Z-axis coinciding with the earth's spin axis

and its X and Y axis approximately fixed relative to inertial space

(fixed relative to the celestial sphere). This inertial coordinate

system and its relationship with the earth fixed cartesian system is

shown in Figure 2. Very briefly, the inertial system is defined in the

1
following way. The apparent motion of the sun around the Earth approximately

lies in a plane called the ecliptic plane. The intersection of this plane

with the earth's equatorial plane defines a line which is approximately

fixed in inertial space. We take the positive X-axis of the inertial system

as the direction of this line of intersection going from the C.G. of the

Earth in that direction where the sun crosses the equatorial plane going

from south to north. This direction is known to the astronomer as the

First Line of Aries. This coordinate system is called the True Equatorial

System of Date to denote that it is defined by the direction of the

instantaneous spin axis of the Earth and the intersection of the
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instantaneous equatorial and ecliptic planes. This system experiences

small accelerations due to the fact that the earth's spin axis precesses

and nutates relative to inertial space and the apparent motion of the sun

around the Earth does not lie exactly in a fixed plane. However, for our

purposes this coordinate system is a sufficient approximation to an

inertial system and for coordinate systems which are more accurately

inertial you may refer to reference i.

It is inevitable that other coordinate systems must be

introduced when discussing the location of a tracking station on the

surface of the Earth. This is because all surveying is done on the

surface of the Earth and it is most natural to define coordinate systems

which are surface coordinate systems. I shall now briefly discuss the

various geodetic coordinates required to locate a tracking station

referring you to references 2 and 3 for details.

A surface from which a natural surface coordinate system canbe

developed is one of the equipotential surfaces for the Earth. If this

equipotential surface is chosen to coincide with mean sea level (average

height of the sea surface when corrected for tides, weather effects, etc.)

the surface is known as the geoid. This surface, by definition, is

everywhere normal to the direction of the force of gravity, and all

measurements of relative height are most naturally referenced to the geoid.

When over land the geoid is not measurable in as straightforward a manner

as one might think. Clearly many areas will have the geoid located below

the physical surface of the Earth. When this is the case it is necessary

to correct for the gravitating mass that is above the geoid when using

gravity measurements to determine the geoid. Correcting for this mass
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inevitably involves assumptions as to the density, inhomogeneities, etc.,

for the crustal mass, and for clarity one refers to the co-geoid 2'3

rather than the geoid when discussing the determination of an equipotential

surface over land masses. To the accuracy required for these lectures

however we may assume that the geoid and co-geoid are coincident and,

consistent with the previous assumptions, we may assume that the geoid

is time independent.

The shape of the geoid is sufficiently complex that it is

inconvenient to use in computations. For this reason it is common to

use an oblate spheroid (ellipse of revolution) which approximately

follows the geoid in specifying the geodetic coordinates of a station.

Figure 3 shows a meridianal section of a spheroid with the pertinent

quantities used to define the spheroid and the coordinates of a point on

the surface of the spheroid. A spheroid, being an ellipse of revolution,

has its surface defined when its semi-major axis and eccentricity are

defined. In practice the flattening, f, is given instead of the eccentricity

i = i i ¢2
and is related to the eccentricity by the formula: T - The

latitude and longitude of a station are always referred to the spheroid.

The geodetic latitude, q0G, is defined by dropping a perpendicular to the

surface of the spheroid and noting the angle of intersection of this normal

with the equatorial plane. Consequently, the cartesian coordinates _G' Zo

in the meridian containing the station are (see Figure 3).

a V X2 + y2'
_G = =L 0 0

_i + (i - i/f) 2 tan 2 q0G

Z = ( i- i/f) 2 _G tan _G
O
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The longitude is, of course, related to the cartesian coordinates

X Yo by XG = tan -I Yo/Xo.o _

In specifying the orientation of a spheroid with respect to the

spin axis and center of gravity of the Earth the intent is normally to

have the semi-minor axis coincide with the spin axis and the semi-major

axis lying in the equatorial plane with the center of the spheroid at the

center of gravity of the Earth. In practice the specification of this

orientation is done at the surface of the Earth at a point which is

denoted as the datum point. This implies that the spheroid is oriented

to the geoid at a point on the surface of the Earth which does not

coincide with either the spheroid or the geoid. Such a connection is

subject to measurement errors such that any given spheroid associated

with a major surveyed area does not in fact coincide with the center of

gravity of the Earth and the earth's spin axis.

With the advent of satellites and their use for improving the

force field of the Earth it is becoming common practice to define a world

wide survey system or datum which has its spheroid, by definition_ orientated

correctly with respect to the center of gravity of the Earth and its spin

axis. For example, the current NASA World Datum has as its semi-major

axis and flattening

R = 6378.166 kilometers
o

f = 298.24
o

160
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With such a definition for the orientation of the spheroid it then becomes

a straightforward procedure to state the coordinates of the geoid and

the various geodetic coordinates of the tracking station relative to

this spheroid and to give transformation formulas for obtaining the

geocentric coordinates of a station. Of course when using such a

world wide datum it is necessary to obtain transformation formulas from

the datum of a major surveyed network such as the North American Datum

to the World Datum. Such transformations normally assume that the

spheroid for the local datum has its axes parallel to the axes of the

world datum spheroid so that a translation only is needed to transform.

from one spheroid to the other.

Before proceeding further, I shall now briefly show that to

first order in the flattening, f, a spheroid approximates an equipotential

surface for the Earth. This proof depends upon the experimental fact that

J2 : 0(l/f)

Jn' Cm Sm = 0(1/2)n' n
n>2.

The proof proceeds in the following manner. For any point on the spheroid

let

Xo' Yo' Zo' R = V X 2 + y2 + Z210 0 0 0

z VX_o+_
o o

sin q0 - R ' cos q0 = R
o o

a = semi-major axis of spheriod,

f = flattening.
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Then:

R2[ 2]o c°s 2 sin
2 _+ =i
a (l- l/f)2

i
i

I
For any point rigidly connected to the Earth, the measured gravitational

potential will be the sum of the gravitational potential, U, as measured

in inertial space and a potential whose gradient yields the centrifugal

force arising from the earth's rotation. Letting this earth-fixed

potential be _ and noting that all coefficients in the expansion for U

are 0(i/_) except J2:

_ K[ J2 z2 _ R (x2+ Y2) )]--R-- i + --_--(3 R2 I) + 2K + O(I/f2 '

I

I

I
I

I

where _E = angular rotation rate of Earth (rad/sec). We consider now

the potential, _o' for any point Xo, Yo' Zo on the spheroid. From the

above equations:

I I  Kl+°I',_0 = -_- 1 - -_-- + _K" + sin2 qD + -

where it has been noted that:

2 a3% = o(llf).
2K
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Thus, letting

1/f= - -_-J2 +2

2 a3%
2K +o(J_),

we have

2 a3

4o :-_-K{i --7--+J2%2K + O(1/f2)}'

which is a constant to O(i/f).

The above proof indicates that the geoid (more properly the

co-geoid) will not differ markedly from a properly defined spheroid.

Consequently, the spheroid provides a convenient base for specifying

quantitatively the geoid. This is done by specifying the geoidal height,

H( q0G , XG) for any given geodetic latitude, qDG, and longitude, XG, as

defined on the spheroid. This relationship is shown in Figure 4A where

it can be seen that any point XG, YG' ZG on the geoid is related to the

geodetic latitude and longitude by the formulas:

XG = (_G + H cos @G ) cos XG,

YG : (_G + H cos _G ) sin KG,

Z G = (i - i/f) 2 _G tan _G + H sin _G"

We are now ready to include the remaining geodetic quantities

needed to specify the geocentric location of a tracking station. Those

quantities which have not yet been discussed are (in order of importance):
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h = elevation of station above geoid (measurednormal to geoid),

= deflection of local vertical in meridian (positive north),

= deflection of local vertical in prime meridian (positive east),

5X, 5Y, 5Z = position of center of spheroid associated with local survey

relative to center of world-wide (NASA)spheroid.

Figure 4B showsschematically the first of these three quantities in

relation to the geoid and spheroid. The last three are self explanatory.

Without further discussion I shall now give the final computational

procedure for determining a station's geocentric cartesian coordinates given

the geodetic quantities that I have just previously discussed. For further

details I refer you to references 2 and 3.

a

_L =
!

V i + (i - i/f) tan 2 q_G

a, f = semi-major axis and flattening

for local spheroid.

XR = [_L + (H + h) cos _G ] cos kG - h[_ sin _G cos kG + _ cos _G sin k G]

+ 5X + second order in _ and I],

YR = [_L + (H + h) cos _G ] sin kG - h[_ sin @G sin kG - _ cos _G cos kG]

+ 5Y + second order in _ and _,

20' 4

a

II

If
II

I
I

I

I[
I

I
It

i

I

l
I
I
I

I

I
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ZR = [(! - !/f) 2 _L + (H + h) cos _G ] tan qOG + h _ cos q_G

+ 8Z + second order in _ and _.

References

i. Newton, R. R., "Astronomy for the Non-Astronomer", IRE Transactions

on Space Electronics and Telemetry, Vol. Set-6, No. i, March 1960.

2. Bomford, Brigadier G., "Geodesy", Clarendon Press, (1952).

3. Heiskanen, W. A. and Vening Meinesz, F. A., "The Earth and its

Gravity Field", McGraw-Hill Publishing Company, (1958).



- 14 -

Z

Greenwich

Meridian ---->_

X

b Y
V_Earth' s C.G. /

__ *----Equatorlal Plane

d

/

I
I

!
I

I
I

I

U

Figure i.

I o _,



i

I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I

First Line

of Aries

Z

AG(t)

- 15 -

Figure 2

ldi

Y



I

- 16 - m

I
I

I

._ I
I

i

•_ I

!

_-- Semi-maj or

Axis, a

Figure 3

163

m

i

I
I
I

I
I



!

I - 17-

!

I (XG'YG'ZG)

, <..
q_G

| ___ aeoid

, 2
1
!

I Figure 4A

I
Station _

I

1

I Figure 4B

Spheroid

Spheroid



-II.l-

LECTUREII

INTRODUCTORY REMARKS CONTINUED

In Lecture I we briefly considered a suitable representation

for the geopotential and its relation to methods for locating a tracking

station on the surface of the Earth. I now wish to turn our attention

to the motion of a satellite under the influence of the geopotential and

to present some working formulas relating the geometry of the satellite

relative to such a station, which will be needed in the future lectures

when we consider in more detail the effect of errors in the location of

the tracking station and in the satellite motion.

Generally when we speak of a satellite orbit we imply the

ability to compute (to some acceptable accuracy) the position of the

satellite as a function of time in inertial space (for example the True

Equatorial System of Date). The computation of such a satellite ephemeris

clearly implies that a well defined force field has been assumed to be

acting on the satellite, and satellite tracking data has been used to

determine the orbit parameters (initial boundary conditions) for the

solution of the differential equations of motion for the satellite.

Since we are primarily interested in the geodetic aspects of

satellites and their motion I shall make the following restrictive

assumptions to simplify the analysis which will be presented in the

following lectures.

I
I
I

I
I
I

I

I
I

I
I

i

i

I
I
I

I}_0
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A. Assumptions Concerning Satellite Orbits.

i. Satellite motion

a. non-relativistic approximation to equations of motion,

b. near-earth satellites with small eccentricity (satellite

altitude not less than about I000 km and eccentricity

e _ .05).

2. Satellite forces not considered

a. non-gravitational in origin,

i)

2)

3)

b.

air drag

radiation pressure

elect romagnet ic

non-static and extra-terrestrial gravitational forces,

i) Sun, Moon, other planets, etc.

2) earth's body and sea tides.

In addition to these assumptions we presume that we have at our disposal

a world-wide net work of tracking stations together with the necessary

data links and computer programs to establish (or track) the satellite

to an accuracy limited by the accuracy of the geopotential and station

locations assumed and the accuracy of the experimental tracking data.

To further simplify our considerations I shall assume that there are

negligible errors in the experimental tracking data. In particular

I assume:

See for example reference 4 for a discussion of their effects.
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B. Assumptions concerning experimental tracking data.

1. Signal propagation errors due to atmosphere are not considered,

a. ionospheric and tropospheric refraction (scintillation

if optical data),

b. ducting, skip propagation, etc.

2. Experimental instrumentation errors are negligible,

a. misalignment and poorly calibrated tracking instruments,

b. "front-end" receiver (detector) noise

c. errors in transmission and formatting of data.

There are four fundamental measurements that are commonly made

during the time that a satellite is above the horizon of a tracking station.

These are:

1. Vector slant range

_(t) E _s(t) - _R(t)

2. Scalar slant range

p(t) = l_(t)l

3. Slant range unit vector

_(t) = _(t)/p(t)

4. Scalar slant range rate

d p(t) = _(t)&(t) = d_ _(t)

where :

r s(t), rs(t) = satellite position and velocity in True Equatorial System
of Date

_=(t), r=(t) = tracking station position and velocity in True Equatorial

System of Date.

I { 2

m i

I
I
I
I
I
I
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I
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I
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The slant range vector is typically the type of data taken by a tracking

radar using the narrow beam pattern of the antenna to measure the slant

range unit vector and its range (time of flight) instrumentation to

measure the scalar slant range. Some radar tracking systems measure only the

scalar slant range recognizing that the operating frequency is too low

to accurately define angles. Optical tracking, of course, measures the

slant range unit vector that is, right ascension and declination or

azimuth and elevation. Finally tracking systems exist which use the

measurement of the radio Doppler shift to make direct measurement of

the scalar slant range rate. Some installations measure the slant

range vector as well as the scalar slant range.

Clearly, the above types of data involve various combinations

of quantities directly related to the relative geometry between the

satellite and station during the time that the satellite is above the

station's horizon. The remainder of this lecture will be devoted to

presenting notation, convenient coordinate systems, and expressions

relating the various quantities associated with the relative geometry

between the satellite and station.

Let

t = time of closest approach of satellite to station,
c

tR = time of satellite rise above station's horizon,

t = time of satellite set below station's horizon,
S

B(t) = satellite argument of latitude,

AB o = B(t s) - B(tc) _ B(t c) - B(tR) ,

E£, A = elevation and azimuth of satellite at t .z C

• i /3
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Figures 5, 6, and 7 show the geometry of the pass and presents a convenient

coordinate system in which to consider the motion of the satellite relative

to the station. This coordinate system is fixed in the satellite inertial

space and has its coordinate axes defined at the time of closest approach,

t . The Z-axis is defined to be the direction of the instantaneous
C

angular momentum vector of the satellite at tc. In Figure 5, the X-axis

is defined as that line of intersection between the equatorial plane and

the plane normal to the Z-axis and which contains the satellite position

at t . The Y-axis is choosen such that the X, Y, Z coordinate system
c

is a right-handed system. Clearly, the X-Y plane is the osculating

plane of the orbit at the time of closest approach.

Figure 6 presents in more detail the pass geometry at the time

of closest approach where the H-axis passes through the position of the

satellite at tc. Figure 7 presents the geometry of the pass projected on

the X-Y plane and where the new coordinate axis, L, has been introduced

to make the H, L, Z coordinate system a right-handed system. In Figure 7,

the satellite position relative to its position at the time of closest

approach is approximately shown with the change in the argument of

latitude being denoted by A_. (For simplicity the motion of the station

during the time of the pass has been approximated as zero for clarity.

The coordinate system which will be of primary interest to us in the

following lectures is the H, L, Z coordinate system presented in these

three figures.

The usual definitions for the elevation, E_, and azimuth, Az,

are inconvenient when deriving general formulas valid for all possible

!
!
l
I
I
l
l
I
I
I
I
l
I
I
I
I
I
l
I
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paths of satellites past a given tracking station. For example, if a

satellite passes through the zenith of the station the azimuth makes a

discontinuous change of 180 ° . Two quantities directly related to the

azimuth and elevation are much more conveniently used in such derivations.

These have been denoted as the "pseudo azimuth", az, and "pseudo elevation",

e. Figures 8A, 8B, and 8C show the relationships between the normally

defined azimuth and elevation and the pseudo azimuth and elevation. It

can be seen that the pseudo azimuth and elevation are obtained by

altering the quadrants in which the azimuth and elevation lie such that

there is continuity in changing from one type of pass geometry to another.

For example, referring to Figure 6, the pseudo elevation is indicated and

(for the case shown) can be seen to be identical with the normally defined

elevation. This pseudo elevation will remain continuous as the vector Pz

decreases through zero and goes negative, at which time the pseudo elevation

increases beyond 90o . From Figures 8A and 8B it can also be seen that as

Pz goes negative there is no discontinuity in the value for the pseudo

azimuth.

In the lectures to follow the effects of the errors will be

considered to first order. Consequently, the coefficients multiplying

these errors need be derived only to a crude accuracy. For example, to

sufficient accuracy the change in the station position during the time

of the pass can be neglected in the expression for the slant range

when it is involved in expressions which have been expanded to first

order in the errors. Those relations which will be needed in the follow-

ing lectures are now briefly summarized to the required accuracy. For

details, I refer you to reference 5.
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Let

rR = Ir_R(tc)l, r s = Irs(tc)l,

rR,s = rR/rs' Ps = P(tc)/rs"

Then, from Figure 7,

2 2

rR, s = i + Ps - 2Ps cos e

and

sin e = rR, s sin (w/2 + e) = rR, s
COS e.

These two formulas may be rearranged to yield:

I

2 _ sin 2 @ ,
Ps = cos e - _ rR, s

2

i - rR_ s

_f 2 cos 2 e + sin e
i - rR, s rR, s

Neglecting the station motion in inertial space, to zeroth

order the slant range vector in the H, L, Z coordinate system becomes

I

i
I
I
I

I
l

I
I

I
I

I

I
I
I
I

I
I
I
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I

I
I

0H(t)_

[(t) = IPL(t) I ,

LPz(t)}

IPs cos e - i + COS hS(t)_

\

J= r_sin AS(t)

_- Ps sin @

+ first order,

where,

I AB(t) : #(t c)

1
(t - tc) + O(e).

Finally, defining the quantities

I

I
I

I

u s = i - Ps cos 8,

C(t) = i - cos AS(t),

_(t) = rslsin AB(t)

_- Ps sin @

+ first order,

with

2 )'_/ps + 2 _ c(tp(t) =_/_(t) _(t)' = r s s + first order.
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4. Kaula, W. M., "Celestial Geodesy", National Aeronautics and Space

Administration, Report TND-II55, March 1962.

e Guier, W. H., "Studies on Doppler Residuals - I: Dependence on

Satellite Orbit Error and Station Position Error", Applied Physics

Laboratory, The Johns Hopkins University, Report TG-503, June 1963.
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LECTURE III

STATION AND SATELLITE TRAJECTORY ERRORS

With this lecture we shall begin the discussion of the effects

of the geodetic errors. I begin by considering the station location

errors. In the first lecture, we considered the Earth fixed cartesian

coordinates of the tracking station. Let its corresponding spherical

coordinates be:

q0R = geocentric latitude,

= sin -I ZR ;

rR

kR = geocentric longitude,

= tan -I YR/XR;

rR = geocentric radius,

•_f__2 _2 . _2'

=V_R + _:R t z,R

Let the errors in these coordinates be 5_R , 5kR, 5r R respectively. Then,

a representation of these errors in distance units to first order in the

errors are:

ErR = 5r R ,

Eq_2 = rR 5% ,

EXR = rR cos _R 5XR "
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I nowwish to rotate these errors into the H_ L, Z coordinate system

defined in lecture II.

Rotating first about the station radius vector by the pseudo-

azimuth, az, (Figures 8A and 8B of Lecture II):

E is unchanged,
rR

+ EXRcos aELR= E R sin az z'

EZT'= E_Rcos az - EKT sin az.

WhereE_ is perpendicular to r R and lies in the H-Z plane and is
frequently referred to as the station cross-track error. Making now

a rotation about the L-axis by an angle X (Figure 6 of Lecture II),

=E
EH R rR

E ' sin X,
cos X - ZR

Ei_ is unchanged,

EZR = ErR sin × + EZR' cos X.

From Figure 6, it can be seen that

sin X = Ps cos e,

cos X = Ps sin e + rR, s.

Successive substitutions for sin X, cos X and then E ' yields:
ZR

EHR = rR, s ErR + Ps [sin e ErR - cos e cos az Eq0R + cos e sin az Ek R]

u

I
I
I
I
I
I

I
I

I
I

I
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I
I
I
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I

I
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E + EXR cos a ,ELR = sin a z q°R z

EZR = rR, s[cos a z E_R - sin az Ek E ] + Ps [c°se E_+ sin e cos az Eq0R

- sin e sin a z EXR]

These are the expressions for the station error which we shall eventually

use in computing the effect of station error on tracking data residuals.

From here on we shall assume that these errors are scaled by the mean

equatorial radius, R
O"

I now want to direct our attention to the more involved task

of obtaining si_nilar expressions for errors in the satellite motion during

the time the satellite is above the station's horizon. We assume that

the satellite has been tracked such that satellite position errors may

be considered only to first order. We denote the coordinates of the

satellite by rs, _s' ks in inertial space. These are related to the

osculating kepler elements 6'7 by the relations:

a(l - ¢2) (units of R )
rs = i + e cos (B _) o

sin _s = sin i sin B,

cos _s cos (ks _) = cos i sin B,

cos _s cos (_s _) = cos B,

tan (k s- _) = cos i tan B,
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whe re :

a = semi-major axis (units of R ),
O

e = eccentricity,

i = inclination,

= argument of perigee

O = right ascension (longitude) of ascending node,

M = mean anomaly,

= n = anomalistic mean motion,
O

B = argument of latitude,

f = B - _ = true anomaly,

=M+_.

When a change in the geopotential is made of the form:

AU = --
K AK i

R r [---f- + gn=2 n
o s r

S

-- [AJ n Pn(sin q_s)

O0

+ _] _n(Sin _s)(AC m cos m k + AS m sin m k )]}_=_ s n s

the equations of motion for the chan6es in the osculating elements to

first order are:

2 8AU

5a = n a _B + 0(¢),
0

1

n a
0

[sin (B - o_) _AU 2a_- +- cos (8- _) _u i-- a _J + 0(¢),

l
I
I
I
I
I

I
I
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I
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I
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I
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d5 i i

dt 2
n a
o

_AU
cot6 _ + o(_),

sin i 5Q -
i

2
n a
O

_AU
_- + o(_),

_AU 2
¢5& = nla [- cos (8, - _) _ +--a sin (8 - o_) _AU_8 ] = 0(¢),

0

3 5a 2 _AU
= n5_ 2 a o na

cosi _h + o(_).

In the above formulas, quantities such as --
bAU

_r
s

have been approximated by:

5_u _au
:-_q- + o(_),

and 5_ = 5M + 5_has been used to avoid terms 0(i/e).

Integration of the above differential equations of motion with

the appropriate boundary conditions will provide one description of the

effect of errors in the geopotential on the satellite trajectory. We

shall transform these changes in the osculating elements into the H, L, Z

coordinate system in order to discuss these effects on the time dependence

of the tracking residuals. However, I first want to give two examples

of solutions to these equations to provide a better intuitive feel for

the kinds of effects that arise from errors in the geopotential.

Let us first consider the effect of changing the boundary

conditions. The general solution of these equations of motion can

always be considered as being composed of a particular solution of the

inhomogeneous equations (including terms explicitely dependent upon AU)

and a general solution of the homogeneous part of the equations (AU m 0).
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Considering the solution of the homogeneous equations first, we set

AU = 0 and obtain the following constants.

0

8a = change In semi-major axis,
0

_e ° = change in eccentricity,

_i = change in inclination,
o

8f_ ° = change in right ascension of ascending node,

5_ = change in argument of perigee,
o

_M = change in mean anomally,
0

with

5@ (t) =SM - 3/2
O O

_a o

a
o

n (t - t ) + higher orders,
0 0

t = some epoch, conveniently chosen to be the epoch of the

o original orbit.

It can be seen that when t is chosen as the time of the initial orbit
O

epoch the constants 8ao, 8eo, 8i o, 8_o' _°o' and 5M ° can be interpreted

as changes to the orbit parameters at the orbit epoch.

The above constants, which arise mathematically from a solution

of the homogeneous perturbed equations of motion, are not trivial additions

to the perturbed satellite motion from a physical point of view. When

an orbit is determined from tracking data using erroneous station locations

and satellite forces, the resulting orbit parameters will obviously be

in error even if there is zero error in the tracking data itself.

Consequently, when considering the effect of geodetic errors on the

l
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satellite motion, account must be taken of the errors in the orbit

parameters themselves. The resulting time dependence of the tracking

data residuals due directly to errors in the orbit parameters will be

derived using the above solution to the homogeneous equations - keeping

in mind that they are not arbitrary but a rather complicated implicit

functional of the geodetic errors and amount and distribution of tracking

data along the satellite trajectory.

I Sh_ll choose one other (relatively simple) example to aid

in understanding intuitively the effect of satellite force errors on

the satellite motion and eventually on the tracking data residuals.

This example allows only an error in the value of J3' the so-called

pear-shaped term. A particular solution of the above equations of

AJ 3

°motion for AJ 3 _ 0 is to first order. ( J2 is always considered of

first order, AJ 3 of second order.)

5a = second order

5e = 1/2 AJ3 sin i

J2 a

_3
_i=o(_ j-7),

¢5e = 1/2 AJ3 sin i

J2 a

AJ 3

_(t): o(_-y_-2)

AJ3

sin co + O(¢ T) ,

cos _ + 0(¢ 2 Aj2--_) ,
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From these equations it can be seen that an error in J3 gives rise to

periodic errors in the eccentricity and argument of perigee the period

being the time of one revolution of perigee.

The example of an errored J3 is directly generalizable to the

form of the errors in the satellite motion arising from errors in the

odd zonal harmonics (AJ # O, n odd). Without further remarks, the
n

4
principal effect of geopotential errors are:

l. Error in even zonal coefficients (AJ _ O, n even):
n

a. Secular errors in _, _, _ (increase approximately linear with

time)

b. Long period errors in e, _.

c. Short (orbital) period errors in all osculating elements.

2. Error in odd zonal coefficients (AJ # O. n odd):
n

Long period errors in e and m.

3. Errors in the non-zonal coefficients (AC m, ASm # O)

Periodic errors of angular frequency.

= m (_E - h ) 1 <m < n.%

AS a first step in Obtaining the errors in the satellite motion

in the H, L, Z system, I shall transform the errors to a moving coordinate

system which will also display more clearly the nature of the errors.

This coordinate system is shown in Figure 9A, where:

5rs(t ) : error in satellite radius (satellite altitude error),

8ks(t ) = error in orbital plane normal to r s (satellite along-

track error),

I
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8Zs(t ) = error in direction of satellite angular momentum vector

(satellite cross-track error).

From Figures 9A and 9B it can be seen that

5Z = rs[COS qOs cos I 5{) + 5B] + second order,S

5Zs = - rs[C°S _s sin I 5_ - sin 6 5i] + second order,

Noting from these figures that the local inclination, I, obeys the relations:

cos _s cos I = cos i,

cos q_s sin I = sin i sin B;

5_ s = rs[56 + cos i 5_] + second order,

5Z s = rs[Sin 65i - cos 6 sin i 5_] + second order.

Using now the relations between the various kepler elements:

56(t) = 5f(t) + 5_(t)

= 5_(t) + 2[5¢ sin (6 - o)) - (eS_o) cos (6 - _)] + O(c),
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and

_r -
s

a(l-,2)
z + e cos (B- _)

= 5a - a[Se cos (8 - a>) - (eSa_) sin (8 - _)] + 0(¢),

we have:

5rs(t) = 5a - a[Se cos (_ -_) + (eSc0) sin (B - _)] + 0(¢),

5_s(t) = a[5_ * 2 5e sin (B - m) - 2 (¢5_) cos (8 - _)] + 0(¢),

5Zs(t ) : a[Si sin B - 5_ sin i cos B] + 0(¢).

I shall begin the next lecture by discussing the above two examples in

the 5rs, 5ks, 5Z s system.

Suggested references for Lecture III.

6. Brower, D. and Clemence, G. "Methods of Celestial Mechanics", Academic

Press, (1961).

7. Plummer, H. C., "An Introductory Treatise on Dynamical Astronomy",

Dover Publications, New York, (1960 edition).
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LECTUREIV

ERROR IN SATELLITE MOTION (Cont'd.)

At the close of the previous lecture we obtained the general

expressions for the satellite motion errors in the coordinates 5rs, 5_s, 5Z s

given errors in the osculating elements of the orbit. I now wish to consider

our two examples in this coordinate space.

i. Errors in the orbit parameters at epoch.

The constant orbit parameter errors can be directly substituted

into the expressions for the satellite altitude, along-track and cross-

track errors. We then have:

5rs(t) = 5a ° - a[5¢ cos (13 - a_) + (c 5(o) sin (_ - _)] + 0(¢)0 0 '

_)a

5_s(t) = a[SM ° + _o4COS i 5n ° 23 a° no(t - to)

+ 2(5¢ ° sin (B _) - (_ _o ) cos (B- _))] + o(_)0

5Zs(t) = a[Sio sin B - sin i 5n o cos 8] + O(e).

Recognizing that the argument of perigee, _, is a slowly varying function

of time, the above expressions can be rewritten in a more transparent

form by letting

I
I

I

i
I
I

I
I
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5Ao(t) = - aF_5_ cos o_(t) - (_O

5Bo(t) = _ a[5_ O sin c_(t) + (¢0 _X_o) cos c_(t)],

$_o = a[SM° +_x°° + 5Co cos i],

DZ I = - + $ao'

5Z 2 = 2 5Bo(t),

5Z 3 = - 2 5Ao(t),

5Z I = - a sin i 5_o'

SZ 2 = a 5i o,

so that when errors exist only in the orbit parameters

COS
2 _ .

_rs(t)= "-_- i 2

5_2
+---_ sin B + 0(¢),

5%s (t) = 5Z ° + _i( _ . Bo) + 5_ 2 cos _ + 5_ 3 sin _ + 0(¢),

_Zs(t)= _zI oos_ + _z2 sinB + o(_).
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The above equations display the principal time dependence of

the errors in the satellite motion when errors exist only in the orbit

parameters at the orbit epoch. However, do not overlook the slow time

dependence occurring through the motion of perigee and therefore 5_ 2 and

|

!
I

5_3, and the small time dependence occurring due to the use of the

osculating elements for _ and _. As is to be expected, if there is an

error in the period of the satellite motion, the satellite along-track

error grows linearly with time and the satellite altitude exhibits an

altitude error 5a which will not average to zero.
O

error in the along-track direction at the epoch.

5Z is the position
0

It can be seen that the

remaining terms in the error equations are oscilatory at the orbital

I
!

I

I
period.

2. Error in the third zonal coefficient, J3"

Substituting the errors for the kepler elements corresponding

to AJ 3 into the expressions for 8rs, 8_s, 5Z s we have:

__ i AJ3 sin i
5r s(t) = - a[2 AJ3 sin i sin _ cos (B - e) + 2 J2 a

J2 a

AJ3

+ o(_-y_2)+ o(_3)

2 J2

_J3

sin i sin 8 + 0(¢--_2 ) + O(AJ 3)

cos _ sin (B - _)]

I
I

I

I
!
I

_J3 _J3

5_s(t ) : - j-_ sin i cos 8 + O(s -_2) + O(AJ 3)

5Zs(t ) = O(e -_2 ) + O(AJ3).
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A very interesting point can be seen from these equations. We

had previously noted that the errors in the kepler elements due to an error

AJ 3

in J3 were long period to first order - that is order j---_-. However,

once transformed to a coordinate system that is closer to giving a direct

measure of the satellite position error, the effects (to this same order)

become short period. Because the dominant effect is now short period the

resulting satellite errors exhibit a similar time dependence to the errors

caused by orbit parameter errors along (example i). This means that over

short intervals of time, say a few days it is possible to "soak up" most

of the error due to this geopotential error by appropriate adjustment of

the satellite orbit parameters.

To exhibit this effect clearly, we combine the two previous

examples assuming that no errors exist except _in the value for J3 and

allow an error in the orbit parameters which will minimize the effect of

J3 being in error. From the previous results, we have:

5A(t) = 5Ao(t)

= - a[5¢ ° cos co(t) - (¢ 5_o ) sin _(t)]o

5B(t) = 5B (t) - a
o

AJ3 sin i

2J 2 a

AJ 3
= - a[ sin i + 5e

2J 2 a o
sin c0(t) + (e 5coo) cos co(t)]o

5Z = a[SM + 5coo + cos i 5f]o] ,o o

1_



-IV. 5-

5Z I : - 3/2 5a o,

5L2(t ) = 2 5B(t) = 5_2(t) - a

AJ3 s in i

J2 a

5L3(t ) = - 2 5A(t) = 5_3(t) ,

5Z I = - a sin i 500,

5Z 2 = a 5i o,

and:

5_(t) 5L2(t)
5rs(t) = - 2/3 £I - 2 cos 8 + 2 sin 8 + higher orders,

5Zs(t) : 5_o + 5_1(8 - 8o) + 5L2(t) cos _ + 5£3(t) sin B + higher orders,

5Zs(t ) = 5Z I cos B + 5Z 2 sin 8 + higher orders.

These equations have intentionally been written to look formally like those

which represented only orbit parameter errors. The only difference that

occurs when AJ 3 is not zero to the order considered here is:

5L2(t ) - 5_2(t ) =
AJ3 sin i + higher orders.

J2

Since 5_2(t) , and therefore 5L2(t), are varying with time very slowly, it

becomes difficult to separate an orbit parameter error from this type of

200
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geodetic error. This tendency for orbit parameter adjustment to hide

geodetic errors, exhibited in this example, is a general result for many

types of geodetic errors, particular errors in the zonal harmonic

coefficients of the geopotential. It is for this reason that long

satellite trajectories are usually required to determine accurately

the zonal harmonic coefficients in the presence of other errors such

8,9,10
as station location errors and experimental data errors.

We have considered the general character of the errors in

the satellite motion over long spans of time through two examples. I

now want to consider in more detail the effect of these errors on the

tracking data for a specific pass of the satellite above a specific

station's horizon. To do this we transform the satellite motion errors

to the H, L, Z coordinate system. For some given pass, the H-axis passes

through the satellite position at closest approach and is fixed in inertial

space. Figure lO gives the geometry of the errors in the 8rs, °_s moving

coordinate system relative to the fixed coordinate system of H and L.

From Figure 10; it can be seen that:

8H s = 8r s cos A6 - 8_s sin A6,

8L s = br s sin A6 + 8_s cos &6,

5Z unchanged
s

A6 = 6(t) - 6(tc),

t = time of closest approach.
C

2O",
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Letting

c( B) : 1 - cos AS,

it can be seen that during the pass IC(t)i <<ifornear-earth satellites.

Rewriting the above equations:

5H s = 5r s - 5_ sin A8 - 5r s C(AB)s

5Ls = 5_ s + 5r s sin A8 - 5£ s C(AB),

5Zs unchanged.

The procedure from here on involves expanding 5rs(t) , 5£s(t),

and 5Zs(t ) in the functions sin AS, C(AS) = 1 - cos AS, etc. and then

by substitution into the above equations for 5H s and 5Ls, express the

time dependence of the satellite errors in the H, L_ Z coordinate system

in functions of the form sin A8, C(AB) sin AB C(A_), etc. This

procedure can be done in general but is not too useful to the developement

of a physical understanding of the effects of the errors. Consequently, I

shall make this transformation using the two examples discussed previously,

referring you to reference 5 given in Lecture II, for consideration of

the general case.

I use a subscript c to denote a time dependent quantity evaluated

at t = t The result then becomes:
c"

5Hs(Bc, AS(t)) = 5r c - [5_ c + 5A c sin 8c - 5B c cos 8c] sin A8

20,'.
- [Sr c - 3 5A c cos 8c - 3 5B c sin 8c ] C(AS)

- [SAc sin Bc - 5B c cos 8c ] sin A8 C(AB) + O(C 2) + higher orders,
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5Ls(Bc, AB(t)): _% + [Sr c - 2 5A cos Bc - 2 5B sin 8 ] sin AB - 5£ c C(AB)C C C C

+ [SA cos 8c + 5B sin @c ] sin A8 C(AS)C C

+ O(C 2) + higher orders,

5Zs(8c, AS(t)) = 5Z + [Sn sin i sin Bc + 5i cos Bc] sin A8C O O

- 5Z C(AB) + higher orders,C

where:

5r c = 5a + 5A c cos Bc + 5B c sin _cO

_o : _(to)[_%+ _o + _no oosio]- 2/3_ao(_° ^ '- _o j

+ 2 5B cos 8c - 2 5A sin 8c ,C C

5Z = - 5_ sin i(tc) cos 8c + 8i sin 8c ,C O O

5A c =- a(tc)[5¢ ° cos o_(tc)- (eo _X%) sin _(tc)],

AJ3 sin i(tc)+ 5m sin¢O(tc)+ (¢o5_o)cos_(tc)].
88° = - _(to)[2j2 a(to) o

203
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In developing these formulas we have used the relations:

cos (_c + AB) = cos _c - sin _c sin A_ - cos _c C(A_),

sin (8c + AS) = sin Bc + cos Bc sin AB - sin Bc C(AS),

sin2As = i- cos2_s =2c(AB) +o(c 2)

and where - 2/3 5a o AS has been considered negligible by virtue of our

assumption that the orbit has been "tracked" to reasonable accuracy so

that 5a ° 8(t c) is not large.

In the next lecture, we shall use these relations to investigate

the residuals for various types of data.

References

8. O'Keefe, J.A., Eckels, A., and Squires, R. K., "The Gravitational

Field of the Earth"_ Astron. J., v.64, p. 245.

,

10.
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Kozai, Y., "Numerical Results From 0rbits"_ SA0 Special Report No. 101,
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LECTURE V

EFFECT OF GEODETIC ERRORS ON DATA RESIDUAIS

For the fifth and final lecture I shall use the previous

results to consider the effect of station and geopotential errors on

tracking data residuals. By data residuals I mean:

Data Residual =

Experimental data point - Theory at time of data point, where,

as stated in Lecture II, we neglect experimental noise and instrumentation

contributions to the residuals.

Clearly, the error in the slant range vector is:

5_ = 5rs(t) - 5rR(t),

which, in the H,L,Z coordinate system is:

/ \

5_

..@

5p = 5P L

5P C
k /

/ \

Hs(SC,A8 ) - EHT

= Ls(SC,A8) - ELT

Zs(BC,AB) - EZT

+ second order,

20J
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I
I
I

where we discussed the station error EHT , ELm,_ EZT in Lecture III and

discussed the nature of Hs, Ls Z in Lecture IV.' S

Corresponding to this error, the error in the scalar slant

range, e.g., the slant range data residuals are given by:

I

I
I
I

I
I

I
I

I
I

8p -=I_ + _1 - _ :_ p
P

5_ + second order,

^

= p . 5_ + second order,

where, from Lecture II:

_(t) : r
s

, \

i PS cos e - C(t)

sin A_(t)- Ps sin e

+ first order,

[p2 + 2 G C(t)] _ + first order,p(t) = rs s

S = 1 - PS COS e,

C(t) = i- cos AS(t).

The error in the slant range unit vector, e.g., the angular data

residuals are give by:

I
5p=_ = -p

20_
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or; the angular error scaled to distance error is

p 5p = 5p - p • 5 •

Finally, the error in the scalar slant range rate, e.g., doppler data

residuals are given by:

d d 1

d_ 2[ _ _ (_p) + p= -_ 2 dt
p-

d (pSp) ].
dt

Each of the above types of residuals can be computed by substituting

in the appropriate expressions for the error in the vector slant range.

Using now the two examples in Lecture IV as a guide, we can

write

5_(t) = 5Pc + 8Pl sin A@(t) + 5_2 C(t) + higher orders

where

5_ C = 5_s(tc) - 5rR(tc).

(The proof of this form for general geopotential errors is lengthy and

is given in reference 5 of Lecture II.) Substituting this form into

the above expressions for slant range residuals:
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p(t)

r
s 5p(t) = Ps[COS e 5pH C sin e 5pz C]

[SPLc+ + Ps(COS e 5pH 1 sin e 5pZl)] sin AS(t)

+ [2 5pL 1 - 8pH c Ps(COS e 5pH 2 sin e 5pz2)] C(t)

+ O[sin A8 C(t)] + higher orders.

For satellites whose altitude is of the order of i000 km,

Ps _ "25

c(t) _ .l_

Therefore, to a fair approximation:

A. Scalar slant range residuals:

p(t)
r
s 5p(t) = Ps[COS e 5pH c - sin e 5pz C ] + [SpL C + O(Ps)] sin Ai_(t)

+ [2 5PL 1 5pH C + 0(%)] C(A8) + O[sin A8 C(t)].

Similarly, by substitution into the expression the other types of

data:
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C. Range Rate Residuals:

-- Ino01tll3rs

where n
0

ddt 5p(t) = p2s[SPLc + O(Ps)]

- Ps[COS e 5pH C sin e 5pz C + 0(Ps)] sin A8(t) + 0(p_ C(t))

= ;(to).

These results are summarized in the following table for

purposes of comparison, where they have been scaled to like functions

of time. It should be noted that in the above expressions and the

following table the angular residuals have been written as a three-

dimensional vector in the H, L, Z coordinate system. However, in

reality, the residuals are only a two dimensional vector since

_(t) . 5_(t) = O.

This table summarizes the largest contributions to the

expressions for data residuals when experimental errors are neglected.

, 5PLc, and 5pz C' can be expressed in terms ofClearly, the errors 5pH C

the station location errors, orbit parameters errors, and geopotential

errors following the procedure outlined in Lectures III and IV. A

rough sketch of the time dependence of the various terms are given in

Figures ll so that for any given geodetic error its effect on the

time dependence of the data residuals can be found.

Severalinteresting conclusions can be drawn from this table.

First, it can be seen that for comparable signal to noise ratios, range

and range rate data yield roughly the same information. This, at first

2il
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glance, is surprising since one would suspect that range rate data, being

the time derivative of the range, would loose some information (roughly

analogous to the constant of integration if one attempted to integrate

the range rate data to obtain range). Clearly_ this is not true except

to note that it has been assumed that the transmitter frequency of the

satellite which generates the doppler data is known exactly so that the

incoming signal can "zero-beat" out the satellite transmitter frequency.

(To the extent that this is not true, a term which is constant with time

should be added which can easily be separated out from the time dependence

noted in the table). The second conclusion is that when range and/or

range rate is measured_ the following measurements of the relative error

between satellite and station can be made from a single pass.

5PLc'

5pH C cos e - sin e 5pz C.

Considering now the parameters that can be determined with

angular residuals from a single pass_ we have:

5PLc'

pH C - cos e [cos e 5PH C sin e 5pz C]

= sin e [sin e 5_C + cos e 5pZC] ,

2i3
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5Pz C 5PH C+ sin e [cos e sin e 5pz C]

= cos @ [sin e 5pH C + cos e 5PZc] ,

and

[cos e 5PH C - sin e 5PZc] ,

so that more information is available in optical data than range or

range rate data for equivalent signal to noise ratios and data rates.

Touching, for the moment on the relative merits of different

types of data, the following should be noted. Range and range rate

systems are usually radio tracking systems and consequently have all

weather capabilities and designed to yield very high data rates. I

believe most people agree that no radio tracking system significantly

exceeds the data point accuracy of a good optical (angle) tracking

instrument. However, optical tracking systems are not all weather and

as a maximum can only take data at night. Including the tedious job

of reducing the optical photographs, we can see that range and range

rate systems yield high data rates in all weather conditions but per

satellite pass may yield less information than a high quality set of

optical data. Consequently, it would appear that a high quality radio

range or range rate system and a high quality optical tracking system

are complimentary to each other. For example, optical data provides an

excellent means for monitoring the accuracy of radio tracking systems.

This fact has been recognized in the ANNA geodetic satellite II'12 in

2t4
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- V. IO-

which was flown an active flashing light to aid in obtaining increased

optical data rates together with instrumentation for two radio tracking

systems.

So far we have been concerned only with the data residuals for

a single satellite pass. Clearly, when considering many such sets of

data residuals, one has the capability of measuring the time dependence

of the orbit error over long time spans to gain information on

geopotential terms which produce secular and long-period effects.

When using such data to make a significant improvement in current

values for station position parameters and coefficients of the

expansion of the geopotential, a sufficiently large number of

parameters must be inferred from the data that it is essential to

have very large amounts of tracking data. In fact experience has

shown that one really needs many satellites at differing inclinations,

to accurately determine the non-zonal coefficients of the geopotential.

The techniques and associated computer programs which are

used to perform such determinations of geodetic parameters are outside

the scope of this series of lectures. It is sufficient to note that

one must have available high quality tracking data from many satellites

and extensive computer programs before such an attempt is capable of

improving on current accuracies. I hope that this series of lectures

has clarified some of the problems involved in the design of such

programs and highlighted the essentials of the information content of

the data residuals that would be used.
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FIGURE IIA

FIRST SYMMETRIC TIME DEPENDENCE
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Geodetic Problems and Satellite Orbits

by

Dro William Ho Guler
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Geodetic 'Problems and Satellite Orbits

The main problems to be discussed in this series of lectures

will be:

l o Methods of finding and specifying where tracking stations are

on the surface of the earth° The location of tracking stations

being with respect to the spin axis and center of gravity of

the earth.

2. Discussion of satellite motion in the earth's force field.

In particular the effect of the various harmonic terms in

the earth's potential on the motion of a satellite.

Some standard reTerences are:

io Bomfo_d, B.Go, _eo_esy, Clarendon Press (1952).

2. Heiskanen, W.Ao and Vening Meinesz, F.A_, "The Earth and Its

Gravity Field," McGraw-Hill (1958)o

Earth's Potential
L , ,

Assuming that the earth's force field is +gradU, we have:

U(R,_,_) = K 1 + _ J RO Pn (sin_)+

n=2 n n

for the earth's potentail, where R is distance measured from the center

of the earth, (_is latitude, /_ is longitude. Pn (sin (_) and t_n (sin (_)

are the standard and associated Legendre polynomials° R0 is the average

earth's radius, while K_ Jnj Cm Sm are constants to be determined°n _ n

If we make the logical assumptions that our coordinate system

origin at the center of the earth, and that _ is measured

I

has its

I

I

I
I

I
I

I
I

I
i

i
i

I
I

I
I

I

I

I



I

I

I

I

I

I
I
I

I

I
I
I
I

I
I

I

I

!

Earth's Potential e

relative to the earth's spin axis (which we asst_ne goes through the

center of gravity of the earth) and both the center of gravity of the

earth and the earth's spin ax_s _o fixed relative to the earth's

crust, it follows that J1 = C'_ = 8I'_ 0 and C2'= S2'= O.

We will not be interested in the gravitational field inside the

earth, and will assume that the gravitational field is time indepen-

dent.

Satellite Orbits

Beside considering the equations of motion of a satellite, we

will a_so consider orbit parameters.

There are many restrictions _e will make in our study of the

motion of a satellite:

1. The equations of motion _ill be non-re_tlvistic.

2. Air-drag and electromagnetic forces will not be considered.

We will assume that the satellite is above lO00 kilometers

where air-drag is negligible.

3. We will assume a low eccentricity _.05.

2. We will neglect all errors in data. This _ill include such

errors as:

a. Radio data, i.e., ionosphere and troposphere refraction

will be neglected.

b. "Front End" receiver nois_that i_ detector noise will

be neglected.

c. Data goofs such as bad card punches and systematic

errors will be neglected.

9. Extra-terrestrial forces will be neglected, i.e.,the force

of the sun, moon and planets.
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Da.ta Residuals 3o

We will assume some _brce field for the earth, and some n_nerl-

cal way of solving the equations of motion° At a particular time tk

we will have computed and measured orbital parameters° The difference

between the measured and predicted values will be called the data re-

siduals o

In equation form:

R(t k) = T(t k I Forces, station location, orbit parameters,

methods of computation) - E( experimental error).

We will try to minimize the residual errors in the least square

sense o

Kinds of Data

The kinds of data we will be concerned with are:

1. 0ptica] data giving the slant range unit vector.

2. Radar range data giving the scalar slant range.

3o Range rate data from Doppler measurements o

Naturally some stations will have mixtures of these three

types of data° These lectures will stress type (3)o

Finding Station Locations

Figure io
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Finding Station Locations _o

We will now develop a method for specifying where a tracking

station (x___, YT ' ZT) is with rebec t to the coordinate system shown

in Figure 1.

We first approximate the earth by a spheroid or oblate ellip-

soid of revolution. Specifying a spheroid is referred to as a datum.

Thus the NASAworld dat_n is

R0 = 6378.166 kilometers fo = i1298,24

where R0 is mean equatorial radius of the world scaling factor and

f,_he so-called flattening, is related to eccentrlctyby the formula:

f=l- _/i-6 2.

With this scaling factor the earth's semi-major axis is i in

the NASA world datt_m.

Geodetic Latitude

Figure 2.

Positions on a spheroid are given by reference to geodetic

latitude, defined in Figure 2. (One uses the normal to the surface

since this is the approximate way a weight would drop.) Some
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Geodetic Latitude 5.

standard formulas are:

DG-a/41 ÷(l-f)2_2 _G

z0 = (1 - f)2pG tan _G

-- +

a2 a2(1 . f)2
= 1

Geodetic longitude = tan "I YO

xo

Equipotential Surface

An equipotential surface _ on the surface of the earth,

taking into account the earth's rotation is:

_=u+ _ 2) =
2 (X2 + Y Constant.

To terms of higher order, one has:

V
J2

U0 = K |I +

L

Ro
2

Setting x0 Xo YO

R0 R0

on the surface, one has:

_0 = UO + _E 2 2
_- RO PG "

(3z2I]R-_ - I

z0 = Z0

Ro

2 2

Xo*_o-_

2Z4



Equipotential Surface 6o

Two formulas are :

• @Ro3
m

K 2 2K

2.K

Geoid

A geoid is an equipotential surface that best approximates

mean sea-level.

A co-geoid is the best approximation to a geoid over land

masses where the geoid can't be actually measured.

To give position on a geoid, one uses the geoidal height H

which is the distance between co-geoid and spheroid measured along

the normal to the spheroid. Thus position on the co-geoid is gi-

ven by the formulas:

XG = (pG + H cos (_G) cos /_G

YG = _DG + H cos SG ) sin _G

zG = z0 + H sin

Figure 3.

2Z5



Position on Earth 7o

To finally specify position on earth, one must have three other

parameters.

h = elevation above co-geoid (measured perpendicular to co-geoid)

Since the perpendicular to the co-geoid may not be parallel to the per-

pendicular to the spheroid, we need:

_= deflection in meridian between perpendicular to co-geoid

and perpendicular to spheroid

= deflection in prime vertical between perpendicular to co-

geoid and perpendicular to spheroid.

%_e final formulas for the posit_on of a tracking station are:

cos _G " h [ _sin _G cos _G +

_cos @G sin _G] + 6x + terms of higher order

YT = I_G + (H +_)cos _GI sin_G " h I _ sin _G sin _G -

% oos + U + terms of higher order
Y

= + _h cos @ + 6 + terms of higher orderZT Z0 + (H + _) sin _G G z

The three terms C,_x3 _y,

changing from one datum to another°

datt_n to NASAworld datum.

have been added to account _'or
z

For example, from North American



Station Errors 8.

Letting the coordinates of a station be XR, YR' ZR then

rR= + YR + ZR

_R = geocentric latitude = sin-I zR/r R

_= geocentric longitude = tan -I YR/XR

The fundamental errors we will be looking for are:

(a) altitude error ErR _R

(b) North - South error E_R rR 6 ¢ R

(c) East - West error EAR = rR cos ¢ R 6 AR

where _rR , 6 _R' and 6 A R are errors in range, latitude and

longitude. Note for small flattening that _R - ¢ G = O(f).

Relative Geometr_Between Satellite and Station

To describe the motion of a satellite we will use an inertial

system as shown in Figure 4.
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Relative Geometry 9,

When we use the present instantaneous plane of the ecliptic

such a coordinate system will be called the True Equatorial System

of Date. When we use the Vernal Equinox of 1950.0 or 1963.5, for

example, such a system will be called a Mean Equatorial System.

Clearly in such a system one has

where

/_R Ct) = /_G + XG T (to) + w ECt - to)
o

/_R(t) = present longitude of tracking station

_G = longitude of tracking station with respect to Greenwich

meridian

(to) = longitude of Greenwich at time to (this value can
_GTo be found in the American Ephemeris)

W = Earth's rotational rate
E

Some Useful Coordinate Systems

Figure 5. shows a coordinate system X, Y, Z that has X, Y in

the instantaneous plane of the orbit of a satellite and the Z axis

perpendicular to this plane.



UsefUl Coordinate Systems 10.

I

I
I
I

I
I

I
I

Figure 6. shows three pos_itions of the tracking station in the

X, Y, Z coordinate system. Note in this system the satellite moves in

the X - Y plane, tR means time of rise of the satellite, ts is time of

set, and tc is time of closest approach of the satellite to the track°

Ing station. _R(t) is the position of the tracking station, while

(t) is the vector from the tracking station to the satellite. The

unit vector H is in the direction of the satellite at time of closest

approach. (The present H has nothing to do with geodial height.)

_(t) argument of the latitude.is the satellite

Figure 7. shows a cross section in the H - Z plane.

Figure 8. is a detailed picture of the X - Y plane. L is a unit

vector in the X - Y plane perpendicular to H. Note that since H points

to the direction of closest approach, we may ass_ne that L is in the

--*(t) is the satellitedirection of motion of the satellite at time tc . rs

position at time t.

Geometr_ of Path

I

I

I

Defining e and e as in Figure 7., we now wish to prove the

useful formula:

with

2 s) / [ V1 2 2 sine]sin G = (i - rR, " rR, s cos e + rR,s

I

I

I

Proof: ,

From Figure 8., setting rR= I--_R(tc)I' rs

2 2
rR = rs + p_- _,,p_oose

1"_ ( )1
= rs tc one has :

2e3



Useful Coordinate Systems ll,
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Useful Coordinate Systems 12.

I
I

I

I

I
i

I

I
I

II
Geometry at Time of Minimum Slant Range

(H - Z Plane, Satellite motion into page)

Figure 7.
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Useful Coordinate Systems 13.

A

L

Geometry of Pass (Orbital Plane)

Figure 8.
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Useful Coordinate Systems 14_

and

sin

rR

sin ('H'/2 + e) cos e
r : r
s s

Now defining

PS = pc/rs and rR, s = rR/r s

one has

(A) r 2,s--l+ p -2p,

(B) sin 6) = PS COS e

cos 0

Solving (A) f_r Ps one obtains:

Ps = cos 8 -/rR2 s - sln20

Substituting in (B) one obtains the desired answer.

Pseudo Azimuth and Elevation

With the usual definitions of azimuth A and elevation E,,
Z

one encounters certain difficulties. Thus with an overhead satellite,

azimuth changes by 180 °. To prevent this difficulty two new quantities

'_seudo azimuth" a and "pseudo elevation" e have been introduced.
Z

They are shown in Figures 9. and lO., and in Table i, where for-

mulas for converting from azimuth to pseudo-azimuth and from elevation

to pseudo-elevation are given.

!
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I Pseudo Azimuth and Elevation 16.
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Pseudo Azimuth and Elevmtio:_ !7.

PSEUDO ELEVATION AND AZIMUTH

Az imuth

0<A < 77/2
-- Z

_/2 < A </7
-- Z

7_ _-'Az< 3S
2

_ <277"3_<A z
2

Satellite Inclination

O<i< 7T/2

e= II-E_.
a = - A
z z

a = 7_-A
z Z

a = /_-A
Z Z"

a = II-A
Z Z

a = - A
z z

a = - A
z z

e= 7_-_a = - Az z
a = 7_-A
Z Z

= Elevation

A = Az£v_uth
Z

e= Pseudo Elevation

a = Pseudo Azimuth
z

Tab le Io
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Slant Range Vector 18o

We will now derive the coordinates of O(t) in the H - L - Z
f_ -

coordinate system,,

since

--@

Setting p(t) = ( PZ' PH' PL ) we first have, (see Figure 7.),

t

PZ does not change with time,

PZ - - Pc sin e = -rsCt c) ps sin 0

where we have defined p s _- pc/rs(tc)"

For PH' one first has from Figure 8.

p_ irs(t)ioos__,_(t>

Since we are dealing with nearly circular motion, we have:

(A) rs(t)l -- rs(tc) + 0(_ ) rs(tc) = I_(to)I

and fromFigure 7-, we have:

(B) rR, xy(tc) = rs(tc) - Pc cos e = rs(t c) [i - Ps cos 0]

Substituting (A) and (B) into the expression for

_H = rs(t c) [cosA_ (t)- (I-- psCOS e)]

' one has:

+ Ist order

Similarly for /DL, one obtains with the use of (A)

pL = Irs(t) l sinA_ (t) = rs(tc) sin A/_ (t) + 1st order

23_



Slant Range Vector

Using the notation

C(= _- Ps cos 6)

c(t)=1-cosA_ (t)

one can write the above formulas as:

H

DL

0z

= rs( tc)

i - _ - o(t)1
s_nA_ (_)

- ps sin e

th
correct through the zero order.

For the scalar slant range, one obtains:

=_ -->p (t) _>(t) • p (t) _Vp2= rs( t c S
+ 20(c(t)

Z33
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Station Errors Expressed in the H - L - Z Coordinate System 20.

(Please note that in the present series of notes that sometimes

the tracking station will be given coordinates XT, YT' ZT' standing

for tracking, and sometimes the notation XR, YR' _ will be used, stan-

ding for receiving. Both subscripts T and R refer to the same thing.,)

We have previously defined the tracking errors ErT, E_ T and _o

(These are about i/4 kilometer in magnitude.) The corresponding formu-

las in H-L-Z coordinates are:

_= rR, s ErT + p [sin e E - cos e cos a E_ +
s rT z T

cos e sin az E_ ]
T

= sin az E_ + E_ cos aT T z

EZ T rR, s

P_

ICOS az E_T - sin az E_T ] +

sin e cos a
z E_T - sin e sin az _TE

+ cos e ErT ]

These formulas are obtained by a rotation. It is assumed that

during the time of pass that the station does not change its position°

Errors in Satellite Position

We now discuss the motion of a satellite. We begin by giving

a few standard definitions.

a = semi-major axis (scaled by RO)

= eccentricity

i = inclination

_= argument of perigee

_= argument of node

233



Errors in Satellite Position 21.

M = mean anomaly

M0 = mean anomaly at epoch

= n = mean motion
0

f = true anomaly

= f +_ = argument of latitude.

I

I
i

Some standard formulas from two-body motion that will constantly be

used are :

r(t_oaC1- C 21/(1+ C cos(fl-U _ |
s

tan f = _I - _ 2 sin E/(cos E - 6 ) I

sin _sin i sin_

tan ( -_ ) = cos i tan_. I

We will assume that we already have a good idea of the coefficients

Jn' C_, smn in the earth's potential, and that we have a good method for

integrating the equations of motion. Thus we will know the orbital

parameters a, e, i, etc. quite acc_ately.

The problem of principal interest wili be to determine small

changes _ a _ 6 e _ 6 i, etc. in the orbital parameters caused by

changes AJn, AC_ AS mn in the earth's potential.

Thus if we define

Au =_K_l_[g Aj
R0 r n n

Pn (sin _ )
+ _.

n
r n

_' Pmn(Slnn _) [3mn cos m_ +

m r

smsinmk]]n °

I

I

I
The equations of motion for the small changes in the orbital parameters

2_a



I

I
I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

Errors in Satellite Position 22.

(assuming small eccentricity) become:

6t, = _ b Au +o(6)

6@----1 [sin(D- &J)
noa L f_ c_ a

+ 2 cos( P - _,J)

_ _ p 3Aua-Y i -- _ cot
noa 8 1

A _ a Au6sin
r 0 }L =---_

noa _ i

l[_¢60:n- V

+ o(g)

+ o(E')

_os(#-u) _ Au
_a

2_asin( ,_ - CJ )

d" (SM+6dt (M/) = " _2 _a6a no " %

.,I-

a Au ] +o(e)
_Au -_o__6 _- o(c)
3a

(This last combination of variables is to avoid terms containing I/ _ .)

be :

Note that in these equations if Au = o, then a solution would

a = _a 0

6e _ 6Co

e6_ o C 6
O

60: 6Q o

6.÷6 m : 6Mo-_ ua°
2 ao

nO (t- to) +

terms of higher order

where the subscript 0 means initial (constant) values. Thus in order

to fit data better, it is always possible to add constants _ao, _eo_

, etc.

24J.



The Term J3 23.

As an example of the use of the above equation, we note that if

J3 is made, the orbital parameters change in the followinga change

way :

= second order change, i.e., no material change8

A J_ AT

sin [_ + 0( g j-_o )_ = _l j____.__sini

_6u,'-2 J2 a _ J---'-_

_i,'5_ ,6 (_+u) all0(_A_)j2

General Rules to Order Unity

One can list the following effects of changes

A Sm on the orbital parameters:
n

AJ n, ACmn,

.

2.

_J for n odd give long period changes in 6 and (._J •
Z

AJ for n even give
n

a) secular changes in _j, Q , M +_J

b) long period changes in _j, M + [J

c) short period changes in all orbital parameters.

& Cm A Sm give changes j
_" n _ n

the period being

sideral day - nodal rateP =
m

Transforming Chanses into H - L - Z Coordinate System

As a first step to transferring changes into the H-L-Z coordinate

242
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Transforming Changes into H - L - Z Coordinate System 23a.

I
I

I
I

I

I
il

I

I
I

system_ we will transform into the moving coordinate system 6 r,

Z (pointing to the satellite) shown in Figtu'e II. 6._is usually

called long track, and 6 r cross track. They are in the plane of

the orbit, while Z is perpendicular to the plane of the orbit°

6L,

Figure Ii.

The basic formulas are:

o(E)

2 _ J _ cos (_-_)+ _ cos iJ + O(t)
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Transforming Chm:-.fS:ainto ][ - L - Z Coo:_d:r.at.:"System 24.

To dezive (A), one proceeds as follows:

with

a(l- _ 21 ] 6a6rs = 6 1 + _ cos (_ -_j ) = I+ _ cos (_ - _J)

a(1-6 2)
x Q

[I+ 6 cos (2 -6d)] 2

Q
66 COS (2" _ )" Csin (_-(.J ) ( 5 /_ " 6 (AJ)"

Now since

_2 = 6 (M + _ ) + 2[ '5_ sin (_ - _ ) - _6(_COS (

+ O( _ ); 6 _ can be neglected.

Thus to O( 6 ) formula (A) is verified.

e 12.

To derive formulas (B) and (C), one must first use the local

inclination I of the orbit, and the local precession of the node

r s cos _ _ Q at (¢, _ ) to obtain:

244
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The Term J3

_= r s _ Q cos _cos I+ f_( 6_ )

Now using the formulas:

tan I = tan i cos_,

cos i cos I cos

and hooking at Figures 6., 7., and 8o to obtain _ ( 6 _ ), fz

one finds

5z = "rs_ _ sin i cos_ + rs

Finally using the previously cited formula for 6

one obtains the desired result.

245

eSo



Deviations in H - L - Z Coordinates 26.

S

J3 °

We begin by listing the deviations that would take place in the

coordinate system if we have a deviation AJ 3 in61s'6%

First setting

_A--- a [_tc 0 c°s (_ (t) " ( _ _ _0) sln(_(tc)]c 0

_B c = - ( AJ3/2J 2) sin i -

a[ 66" 0 sinai (tc) + (_0_J0) cos C_(tc) ]

we find the deviations at time t as:
C

6rc = _ao + _A- c cos_ c + 6Bc sin_

O I

2_A sin_ + 26B cOSec
C C C i

- =- + 6 i0 sin _c£_Z _ Q 0 sin i cos2 c
C

and finally the deviation at an arbitrary time (assumed during one fixed

[ + _B cos_ c ] sinA 2 -= 6r c + - 6 Ac sln _ c c

A c cos c c c

J

61 s 6;c " 2 6 A c c°s_ c c _ c sinA_ -

Z =
S

2 6A sin£cC C

6 Zc + [ 6 Q 0 sln i sin2 c + 6to cos 2 c ] sin A_ -

6z c(Ap ) 24_
C

I
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Deviations in H _ L m Z Coordinates 27°

The things to be stressed in these equations are:

1. Always have changes in elements°

2o Change in character of time dependence°

B. When the elements have only long term effects, then the exam-

ples are general.

L

Figure 13o

It is clear from Figure IBo, that the _ r ' 6t_s _ Z coordinate
system agrees with the H-L-Z coordinate system atSt = . For other

C

times, one must rotate through an angle of /_j_ to put everything

in H-L-Z coordinates_ Using our definition for C(& £ )_ one obtains for

the deviations:

He(t) = (_rs - 6% s sin_ - CSrsC(&_ )

Ls(t)- 6_ s + 6r s sin & _ _

Zs(t) = 6Zs(t}o

Changes in Slant Range Vector

We can now combine our previous results into the change 6

in the slant range vector, where _ F > =
r s

24,



Changes in Slant Range Vector
28.

A _ that in the H-L-Z coordinate system oneOne finds for sm_]l

has :

sin(A_)+_ _2c(A_ )

with the H-L-Z components of _ _c and__2being

_r c - EHT_

.36_ _o_rc c

" - (_A

-_z
C

+ 3_B sin 2C C

+ (SB sin £ c \
C

C sin 2 c )

0 c°S_c

Types of Data

I@ Radar that measures both range and angle accurately. If

such a system existed it would give one all nine components

o_6_, 6n_,6p_.
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Types of Data 29°

2_

3,

_o

Range only from radar,,

Angle only from optical instruments,

Range rate or Doppler,, For a study of this last type of data

see WoH_ Gu±er_ Studies on Doppler Residuals ,, i: Depen ,_

dence on Satellite Orbit Error and Station Position Error°

TG - 503, June 1963_ Applied Physics Laboratory, The Johns

Hopkins University, Silver Springs_ Maryland°

Data

We will begin by studying range data° Note that

We previously derived formulas for _ and p in the H-L-Z

coordinates, so that one easily obtains the following formula for

the range only data_

,pOp
r

s
= Ps [cos_ 0 pc H-. sin6 6 pcz ]

+. [ 6p _ p (oosecSPu sin @ 6 plZ) ] sina

+ p_(oos@6p2 _ -_ o_p_z_] o_A_

Note in these formulas 6 _ means tne H component of

cH

p _ means the L component of 6 _l _ etc_

Figure 14o shows the behavior of a few functions on A _o

With this type of analysis,, one can separate out the various components

243
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Range Data 30. I

!

!

!

!

H !

F_ gure 14. I

Tab le T_,o I

!
range

Table 2 i'_.'ststhe three prinzipal t_es of data, namely, I

o nlx_ Dcpp!er, and e.ng!_ onl.y da_a versus the three types o_ timc

deoendemce_ constant, anci-s.y_mme_ri.-, and s_m_netric. The equations for I

range only we;:e p_ev3ous].y derived. Rho_e for Doppler and for angle

>_]-'Za.re m._-.:_y listed. To derive the latter two, one should use the I

I p p- p- t o - I
_,6_-__--_i _I___r.:_,,___.+_ _J:_lI



Table Two 31.

I
I

I
I

I
I

I
I

It should be remarked that although 6 _ has realTg only two components

4

(.those perpendicular to _") ); that in Table 2 these ±wo components have

been resolved along the three coordinate axes H-L-Z.

Several interesting facts are apparent from the table.

1. Any competent system will resolve at least through the anti-

s_m_netric data.

2. Doppler and range only data are about equivalent in data content.

3. Optical data and radio interferometer data as a function of

time will yield a vast amount of information.

Collections of Passes

I

I

I
I

I

So far we have only been concerned about one pass. When one consi-

ders several passes statistical qrestions natura!]_ arise. Since one

is concerned with very many parameters_ it is essential to have a

large amount of data to avoid singular variance co-variance matrices.

It is felt that in the present state of affairs that the signal to

noise ratio is hi:_., so that elgoorate statistical routines are not

necessary. In fact_ besides least squares some sort of minimax

routine would be useful.

I

I

I

_ical Prob lens

Some typical problems that the foregoing theory could be_ and is

being applied to are_
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Typical Problems 33°

Io Location of islands in a large body of water_ e.g., Hawaii.

Since one can track satellites both from North America and Hawaii_

it would be possible to locate the tracking stations in Hawaii very

accurately.

_n C TM in the earth's potential.2. To determine coefficients Jn_ ' n

3. To locate, for example_ the European datum with respect to the

C. G. of the earth and with respect to the North America datum.

Other Problems

A list of references is attached of other problems such as refrac-

tion problems in radar data, how to eliminate spurious data points, etc.

2J3
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PRACTICAL ASTRONOMY

by

Professor P. Herget
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Practical Astronomy. i r

I. Celestial Sphere and Spherical Coordinates.

Astronomy is the science which deals with the bodies

of the universe and in particular with their positions,

motions, constitution and evolution. The observation of

those bodies such as stars (self-luminous bodles), planets

(bodies revolving around a star), and satellites _(bodies

revolving around a planet) is the concern of practical

astronomy.

All the _elestial bodies will appear to an observer

on the surface of the Earth as lying on a spherical shell

overhead, rotating about an axis through the observer. -

This imaginary sphere of indefinite radius is termed the

celestial sphere and all the bodies in the Universe are

assumed to be on the surface of the sphere. Thus it is

natural to use the spherical coordinates system to define

the positions of stars, planets or satellites in terms of

the two angles of the system.

One system used for tracking artificial satellites,

which we shall call the local coordinates system, has the

zenith as the local vertical and the horizon (basin of

mercury) as the base plane. Choose any point on the hori-

zon as the zero point -- I prefer the north point; we

then have spherical coordinates/m, A, H (Fig. 1).

Draw a great circle which is a circle on and has the

same radius as the celestial sphere through the satellite.

Its position is then located by two angles. The angle H

measured from the horizon is called altitude; the angle A

on the horizon measured from the north point toward the

I
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Practical Astronomy.

east is called azimuth.

The cartesian coordinates

X Y Z are given by

X =i_ cosHslnA

Y =_ cosHcosA

Z =_slnH
(i)

7_. ("z.eni3rh)

\

_&K/ Fig. 1

A

For astronomical observation, radlusf is unobserved.

This system has been used in Project Vanguard, known

as MiniTrack system, and in Project Mercury. In the former,

two direction cosines _ and m, oriented along N - S and

E - W respectively, are measured. Thus

= cosHsinA

m = cosHcosA (2)

The third direction cosine is calculated from _ and m

n = sinH =V1 - &2 _ m2,

which becomes highly indeterminate when the subject is

near the horizon.

Since the Earth's surface is approximately elliptical,

the local vertical should be oriented along the radius of

curvature as show_ in the figure. The center of the Earth

as measured from the local coordinates X Y Z on the surface

257



Practical Astronomy.

is positioned at

X=O

Y =psin(_, - _')

z: -pco_(_-_,)

The difference between

the two angles is actually

very small because the

major axis of the Earth

ellipse is only about 13

miles longer than its

minor axis.

(3)

_ole.

C

3.

C - center of earth

F - center of curvature

Fig. 2

The angle $ is called the astronomical latitude
I

and #' the geocentric latitude. The former is preferred

in astronomical observation, and the latter is used in

map-maklng.

Local terrain also has an effect on the determination

of zenith. On a mountain slope inclined upward from east

to west, the local vertical will tilt to the east. This

is known as local anomaly.

To determine the astronomical longitude and latitude

of an observer, we need another coordinate system. Due

to the rotation of the Earth, the universe seems to revolve

around an axis through the observer and parallel to the

Earth's axis. This axis meets the celestial sphere in the

north and south celestial poles, and the great circle

I

I
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Practical Astronomy. 4.

midway between the poles is the celestial equator (Fig. 3}.

Fig. 3

0 - Astronomical

latitude

H - Hour angle

PSZ - Navigation

triangle

N

Using the plane of the celestial equator as the base

plane, and choosing thevernal equinox, which is the inter-

secting point of the celestial equator and the ecliptic

(the path described by the sun on the celestial sphere),

as the zero point, we have the celestlal equatorial co_

ordinate system. The position of any star or satellite

is measured by the right ascension (angle 0( ) and decli-

nation (angle _ ) (Fig. 4). Since the axis of the Earth

precesses slowly, the equinox is actually moving westward

along the ecliptic (Section V). The vernal equinox of

1950 is now taken to be the standard equinox.

S



Practical Astronomy. .

Fig. 4

_- Vernal equinox

S - Star

O( Right ascension

- North declination

Measurements of the declinations and right ascensions

of stars are of primary interest to many observatories,

notably Yale Observatory, for the purpose of compiling

star catalogs. Equatorial coordinates of all planets

in the solar system from 1650 to 2050 with respect to the

standard equinox were all computed by Eckert, Brouwer and

Clemence (Astronomical Papers of American Ephemeris, Vol.

XII) around 1950. They are now available in punched card

and tape forms.

For celestial measurements, the observing station,

although it is on the surface of the Earth, may be re-

garded as being in the center. The movements of stars so

observed are known as proper motion. Furthermore, for •

star observation, we can even shift the station from the

center of the Earth to the center of the Sun. If the dis-

tance from the Earth to the Sun is taken to be one

_ _)
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Practical Astronomy. 6.

astronomical unit and represented graphically by one inch,

then the distance to Mercury is 0.4 in.; to Venus 0.7 in.;

to Mars 1.52 in.; to Jupiter 5.2 in.; to Saturn 9.5 in.;

to Uranus about 20 in.; to Neptune 30 in.; and to Pluto

40 in. But the distance to the nearest star outside

the solar system is about four and one-quarter miles (on

the graph) away. Thus one is Justified In conslderlng the

center of the Sun as the observing station. However, for

observation inside the solar system, we cannot shift the

center arbitrarily.

With the origin at the center of the Earth, an

equatorial coordinate system can be used to locate the _

observation station on the surface of the Earth. Great

circles passing through the poles of the Earth are called

meridians. The one passing through the vernal equinox

is chosen to be the zero hour meridian. The height of

the observing statlon above the equator is measured by

the angle _ known as astronomical latitude*. _ _he angle _

between the zero hour meridian and the meridian of the

station, measured in siderial hours, is the astronomical

longitude.*

I

I
!

I

I

*This should be distinguished from two other systems,

geographic and celestial. The zero hour meridian of

geographic longitude passes through Greenwich, England.

The difference between geographic and astronomical lati-

tudes is shown in Fig. 2. Celestial longitude and latl-

tude are measured along and above the ecliptic

respectively.
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Practical Astronomy. _ 7.

Fig, 5

C - Center of Earth

A sidereal hour is one twenty-fourth of a sidereal'

day, and a sidereal day is the period of time required for

one complete rotation of the Earth with re§pect to the

equinox, rather than to the Sun. The latter is known as

a solar day. Since the Earth revolves around the Sun

as well as rotates about its own axis, there is one more

sidereal day than solar days in one year (Fig. 6). A

simple conversion formula is given below.

I

I
I
I

Sidereal time _66. 2422
s

1 0027 (4)Solar time = 365.2422 = ....

Adoption of sidereal time

leads to the simple rule

that the right ascension

of an object is equal to

the sidereal time at

which it transits the

meridian.

I

I
I

I
2_2 Fig. 6
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Practical Astronomy. 1

Coordinates with the center of the Earth as their

origin will be designated as geocentric; with the center

of the Sun as their origin as heliocentric. Conversion

of one to the other can easily be done if the geocentric

equatorial coordinates of the Sun, pr the solar coordinates,

are known.

Since the published ephemerldes of solar coordinates

have the center of the Earth as the origin, whereas the

observations are made from the Earth's surface, a slight

correction for the parallax is required. In Fig. 5,

if the distance CO from the center to the surface of the

Earth is expressed in astronomical units, the corrections

to be added to the solar coordinates are

_x = -Acos

_y = -Asini

6z = -4266 x lO-8sln_

A _ = 4266 x lO-°cos_ (5)

Another correction owing to the aberration of light

should be noted. Aberration of light is caused by the

finite velocity of light and the motion of the observer.

When the Earth has a component of motion perpendicular

to the llne of sight, the light does not reach the Earth

along the llne Joining the Earth and the object, but along

the llne Joining the Earth and the point where the object

was at a previous time when the light left it. Thus the

observed position of the object is in advance of the com-

puted position given in ephemeris by

angle O(=tan -I(VE/VL), . _,-

26S
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where V L is the speed of light and V E. is the_veloclty of

the Earth perpendicular to the llne of sight (F_g. 7).

!

Fig. 7

We now _urn::,toi,_he_onyarslon_of_:lo_mlaan__equ@_a-
^ A

torlal coordinates. Let _, J, k b_ the unit vectors

along the geocentric equatorial cartesian coordinates
A A

x, y, z, and I, J, K b_ the unit vectors of the geocentric

local cartesian coordinates X, Y, Z. From Fig. 5_ it can

be shown that

I = -sin + cos
A

K = COS_COS_ + cos_sln_J + sin_
A

= -sin_cos_ - slnSsln1_ + cosSk (6)

An object can be loc_ted by positio n vector r with different

components in two coordinate systems:

A A

r = x_ + yJ + zk
A A A

= XI, + YJ" + ZK.
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i Arrange the direction cosines between unit vectors in

matrix form:

F::n c 1[]: coo oI _iJ os i -sln_sln_ cos$

I L cos_cosl cos_sln I sln_J. (6a)

!
I
I

I
i

I
I

l
I
I

I
I

Then the transformation of one coordinate to the other

can be performed by matrlx multiplication*:

and

m

LII _u2 _13

_21 _2 _23

131 132 t33
-Ix=X

_'ii _21 _31 X x

L12 _22 _32 , =

t13 _23 _33

(7)

Note that the second square matrix is the transpose of the

first one, and thelnverse of matrix _J_lJ]equals the trans-

pose** because the direction cosines satisfy the condition

*If a_ _ and b_ _ are the elements of matrices [a%_ and
[b_ I _gespecti#ely, with i indicating the numSe_ of ro#_'

and_]J the number of columns, the product of these two

matrices is [c.], [a,_ • [b_] = [c,j , with c,, =_a. b_,.

The multiplic_a_6n Urine f_o@J]Craco_v_n with c_ J= T_a_J_ J

has** lost 5round..........since the development of ele_$ronl-c.... _om_uters.
The transpose of a matrix is obtained by interchanging

the rows and columns. The inverse of a matrix [_ij] _
denoted by [_-., is defined as

=_i I = J
where _iJ [0 I _ J

, 265
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II. Calibration.

Astronomical observations are made with the aid of

telescopes. An astronomical telescope must be calibrated

before it can be used to locate accurately the position

of any object° Artificial satellites which travel at a

fast speed around the Earth are difficult to track by

optical means. In such a case, radio waves transmitted

from the satellite are picked up by a ground antenna,

Just llke optical waves being collected by a telescope.

The orientation of the antenna when properly mounted

yields the angular position of the satellite. The ground

antenna also must be calibrated.

Ground antennae in the MiniTrack system are cali-

brated against the stars of known positions and an air .........

plane flying overhead. The plane is equipped with a

strobe light and a radio transmitter. The radio waves

are received by the ground antenna, and the Strobe llght

as well as t_e stars in the background are recorded by a

telescopic camera at the center of the antenna.

Two antennae, one oriented north - south, one east -

west, are used to record the direction cosines of the

radio transmitter on the airplane. More accurate readings

are obtained from the position of the image of the strobe

light on the photographic plate relative to the background

stars.

Let _ and m be the correct values of the two direc-

tion cosines as determined from the image, and r_ and rm

be the readings taken by the antennae. Equations used
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for calibration are

I _ = + a + b_ + cm + d_m + e_ 2 + fm 2r_

m r + a' + b'_ + c'm + d'_m + e'_ 2 + f'm 2 + g'm 3,
m

I where a, . , f and a' '.. , ..., g are calibration constants.

These constants are calculated from a large number of

I values (over 700) of _, m, r_ and rm. After the call .....

bratlon is done, the antennae are used to track the

I satellite, equipped also with a radio transmitter.

I

I

I

I

III. Reduction of an Astrographlc Plate*.

i

A photographic plate which records the images of

stars and other objects as viewed from an astronomical

telescope is called an astrographlc plate. The plate is

usually centered at a star (point C in Fig. 8) with known

declination and right ascension. On the plate, projection

of another object (point S) is measured from the center.

I

I

I

I

I

I

Let the plane CL'S' be tangent to the celestial
A A A

sphere at point C, and let _0, A a_d D b_ three mutually

perpendicular unit _ecters at iC, W_th: _'a hot, all to :the tan-
A

gent plane and A parallel to the xy plane (Fig. 8). We

want to determine the position of the star S projected

onto the plane.

The direction cosines of the unit vectors 0' A, D

*References: Hamburger Sternwarte_ Band 5, No. 19.

WoM. Smart, Spherical Astronomy, Ch. 12.

Turner, Monthly Notices of the Royal Astronomy
Society, v. 54, p. ll (1893).

Koenlg, Handbuch der Astrophyslk, Ch. 6.

Yale Observatory, v. 9.
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A

and _ which are

lated below:

X

Y

Z

!

13. l

along the radial direction OS are tabu- I

I
_0 _ _

cos _ 0 0 -sin _0 cos_ cosAo ( i

0 1 0 cos_ sln_ O(

sin_ 0 0 cos_ 0 sln_ i

I

i

I

Fig. 8

The position vector

m

o_,: _ F _ _^_f = 0 + A + D

where _ and _ , known as ideal coordinates, are to be
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I

I

I

I

I
I

I
I

I
I

I

I
I

I
I

Practical Astronomy. 14,

calculated. Note that

where

Thus

= cos 6 sln A C</D

_= [slnA_ + sin 60cos6 (I - oosAC_)]/D

D = cosA6 - cos6o°°s5(1- cosAc_) (9)

Now consider the tangent plane to be the photographic

plate. The projected position of star S on the plate

relative to point C can be deduced from equations (9) if

and A CX are given.

On the other hand, the inverse procedure of deter-

mining the right ascension and declination of S' from an

astrographlc plate is not so simple. First of all, be-

cause of the centering and orientation error of the plate,

the refraction of light in the atmosphere, and optical

distortion of the instrument, the recorded position of S

on the plate with coordinates X, Y is not the same as

the ideal coordinates _, _ on the tangent plane (Fig. 9).

Next, even if _he ideal coordinates are known, calculation

of A(X and A _ from equation (9) is not straightforward.

We shall first dlscusB various sources of errors on the
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plate.

The mlsallgnment of

axes and center point of

the photographic plate

will shift the coordinates

of S' according to (Fig. 9)

= a + bX + cYa' + b'X + c'Y,

(lO)

where a, ..., c' are constants.

(

Fig. i0

2,0

Fig. 9

A

E'p_S,,

X

_A

I

I

I

I

I

I
I

I
I
I

I

I
I

I
I
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The tilted plate, when centered at the star C,

will shift the llne of sight from OC to OC' (Fig. 10).

The unit vectors 4' and D' along the axes on the tilted

plate are rotated by a small amount about the unit vectors

and _ on the tangent plane. We thus have

A

^ =_o pA
A ^ A

D' = D + qoO'l-

where p and q are magnitudes of rotations.

P1 P" D : 77 F2P D, : _,

Noting that

and setting

_p. _ : _,
we have

_' = P2 P (A + PPo) : F2( ".F 1

,#% .

1 :p2p

+ p/pl )

+ q//_ 1)

(/3o - p_ qD)= "°---2-2 (i- p _ - q_ ).
J P1

Finally, where higher powers of p and q are neglected,

P + P_ + q_2_' -_, q + p _ + q_ • (11)

This result shows that the error due to the tilt of the

astrographlc plate depends on the magnitude of tilting

and the quadratic power of the coordinates.

2 i'i
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Refraction of light in the atmosphere causes the l

images to be displaced systematically toward the zenith.

The optical dlstortionln the instrument is related to I

the cubic power of the distance from center C on the plate.

All in all, we _an compensate these errors by letting l

_=a +bX + cY + dXY + eX2 + fX(X2 +X 2)

= a' + b'X + c'Y + d'XY + e'Y 2 + f'Y(X 2 + y2), l

where a, ..., f and a', ..., f' are called plate constants, i

These constants are calibrated from a number of stars

with known declinations and right ascensions, from which I

the ideal coordinates can be computed from equation (9).

Their corresponding coordinates (X, Y) can be directly I
measured from the astrographic plate. Inserting these

sets of values into equation (12), we then can calculate l
the plate constants.

Once the plate constants are fixed, the same equation l

will be used to compute the ideal coordinates of any

t_nknown object recorded on the same plate. The right i

ascension and declination of the object are then cal-

culated by applying an Iteratlve method to equation (9). l

Equations (9) are rearranged below:. I

A = sin_ _ _D- sln_oCOS6(l- cOsAO()COS_ _i - sin2_ _ - _ I

cos_!cOS_oCOSA6- sln6oslnA6
B = slnA _/Dcos 6 l

cosA O( = V1 - sin2A (X (9a) I

2?2
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Inltially, set _0( and_ equal to zero and compute

A, B and all other quantities in order. Call the results

of the first approximation AI, BI, etc., repeating the

process until the nth approximation with

(An_- __l.)2!_{B_ Bn_)_ _4_C< C

is reached. The C is a preassigned small tolerance,

usually lO -7.

Astrographlc plates of the entire celestial sphere

have been made by observatorles over the wo21d under the

project initiated about 1890. Each plate covers two

degrees in latitude and in longitude. Every quarter of

each plate is overlapped with another plate so that the

entire sphere is covered twice. Since plate constants

are different from station to station, the equations used

to convert plate coordinates to Ideal coordinates also

vary.

In the Publications of the Hamburger Sternwarte, Band

5, are given formulas and tables for the uniform reduction

of plate measures for all the zones of the Astrographlc

Catalogues and the conversion from the rectangular ideal

coordinates to right ascension and declination. Use is

made of the right spherical triangle Zi,S and Napier's

Rules, namely

J

sin = cos " cos (opposites) = tan " tan (adJacents).

In the Hamburg notation,

_r'S.
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= tan(d - _O ), _!cos(d - _ O) = tan _ = tanLS

sin 6 = sin d cosV

sln(90 -_O( ) = tan_tan(90 - d)

tan6 = tan d cos AO(

cos_ = cos d cos_secAO(

sln(9O - d) = tan_tan(90 - AO( )

tangO(= tanUsec d = _cos(d - 60)sec d

sln(d -

!

!

!

:_ - N)sec d Id +-q -T(_)
) sin d cos _- sln_cos d I

= sin d cos d cos _[secAC_ - i]

= _in2d(l - vers_)[secAO( - I] I
6 = d - Dsln2D

For the 2° x 2° plates of the Astrographlc Catalogue,

tables give values of N and D as a functlon of _ , and
/

another table gives the conversion from_tan _(Xto_O_ •

I

J
b'/ _o-_ ._\

,v/_. oh |

!

!
'Fig. ii

!
't

2,4

!
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IV. Dependences.

I
I

I

When the unknown object Is surrounded by a cluster

of stars wlth known positions, the ideal coordinates of

the object can be computed from those of the stars. Let

be the position vector of the unknown object and rl'

r_, and r3 be those of three stars, S l, S2, and S 3

(Fig. 12). Then

= D191 + D2_ 2 + D3_ 3, (13)

I

I
I

I
I

where the D's are coefficients.

On the astrographlc plate,

taking the image of the un-

known object as the origin,

we have three equations to

determine the coefficients:
_e£-ro_r_p h Lc pIo.t e.

DlX 1 + D2X 2 + D3X 3 = 0

DIY 1 + D2Y 2 + D3Y 3 = 0

D1 _ -I_ D 2 + D 3 = 1 (normalized).

I The ideal coordinates of the object are then given by

D1 1 + D2 + D37_3"

I
I

I

Thls method has the advantage of avoiding the call-

bration of plate constants*. However, It does not yield

good results when there ar@ no known stars closely sur-

rounding the object.

*Arend: Bulletln of Astronomy of Brussels, v. l, pp. 124, 199.

2,3
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V. Precession.

As a result of the attraction of the Sun and Moon

on the Earth's bulges near its equator, the Earth pre-

cesses very slowly (approximately one complete rotation

in 26,000 years) about the axis perpendicular to the

ecliptic. Thls_cms_ion_i]Ll_hen_caU_e_he_tti_o_,
which is the intersection of celestial equator and eclip-

tic, to move. The declination and right ascension in the

celestial equatorial coordinate system will thus change
from time to time because of the changing zero point.

These changes will now be computed.

Fig. 13 shows that

the equator precesses
A

about the axis K, per-

pendicular to the eclip-

tic, with angular ro-
tation _ @. The direc-

tion cosines of the unit
A A A A

vectors A, D, K, S,

referring to the celes-

tial equatorial coordi-

nates, are tabulated

below.

Fig. 13

. ,.,

I
I
I

I
I

I
I

I
I

I
I

I
I
I

I
I

I

I
I
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Practical Astronomy.

A
J

k

A A A

K S A D
n uul ..... , Cu j i i], ,,i , im , :i u i, , i a , ,

O cOs_coSO( Sino( -sinEcosO(

-sing cQs _slnO_ cosO( -sin 6sinO(

cosE sln6 0 cos

22.

A
As

'n_"(-sinE' ....sln6 '" " ....

--COS g COS 6 sinK}

Aecos g cos _cos_

Aesln C cos _ coso(

The last column in the table lists the components of the
Ik

change of unit vector S due to precession with

^ A

The components of the same change along" A and D directions

yield the increments of (X and (_ of object C with

and

A_ • _ = Ae(slngsln_slnO(+ cosEcos_) = cos_AC(
A

A_" D = Ae(slngcosO()=A_ ,

Ac_ Ae
At = A-T (cos; E + slnCsinO(tan 6)

A6 Ae
:_ (_n-Cco_).

In the limit, as time t approaches zero,

dC_
d-K- = m + n slnO(tan_

d6
dT = n cos O(, (14)

where m and n are known constants determined from the rate

of precession and obliquity E . In terms of second / year,

m = +3.07327 + 0.0000186(t - 1950,)

n = +1.33617 - 0.0000057(t - 1950).



Practical Astronomy. 23.

VI. Astronomical Refraction*.

Because of refraction in the atmosphere, the light

path from a star to an observer is a curved one. The

star appears to the observer at a position different from

its actual one, being shifted toward the zenith.

Let the altitude of a star S be _/2 - _ , and the

index of refraction of the atmosphere be _ . Consider

the atmosphere to be composed of many layers as shown

in Fig. 14.

_ P

i

0 hot, L2 o n

Fig. 14

In layer i,

£L10R1 = (_1 - 1)tan_

LIR 1 = OR 1 " tan(_L10R1)

(_I - l)tan_ (ih I h0)sec _.

In layer 2,

L2R2 = (_2_,- 1)tan _ • ( h 2 - h 1)see_ + LIR 1

= tan _2 - 1)( h 2 -i h l) + (_ - l)

( h I ho) ]see (.I

*Smart: SpherlaalAstronomy, p. 60.

2 78
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Finally, at point P,

LmR m = tan_.[(_m

a

If W is the unit vector perpendicular to the ZS plane,
A

then W x _ is the unit vector along _1"l._ P_ direction.

_ A

w=SxZ

sin _
A A

^ ^ SxZ
WxS =

sin _

A
x S.=

sln_ ..... csc_Z - cot_S

Then the position vector of P is

A

: RmRo_+Lm%(__S)

.:R_o[_+.Xc_.-._)(.h_-._.-i-I ^
- - hmho ....... f (sec¢ Z -

from which the angle POS can be computed. Several typical

values of the angle P0S at 45 ° altitude are given below.

VII.

h(km)
,i

ZPOS (sec)

0
,,, ., . , • ,

58

Occultatlons.

2 4 6 8 i0 20

53 48 44 4o 36 23

The hiding of ,one object in the sky by another,

especially when a?_o_mb_._:_,._l"_mOf.,_g,.a___,a:.a

planet, is knowfl asoccultation.

Imagine one standing on a star looking at the Earth

along the z axis (Fig. 15), seeing a moon sweep in front

of the Earth. Take the meridian directly facing the star
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An observer on the surface of the Earth with

local hour h (longitude fromcentral meridian) and lati-

tude $' will have coordinates*

= pcos$'sln h

= _(sin@'cos_ - cos$'sln6cos h)

on the x - y plane. If the radius of the Earth _ is

taken to be unity, the moon's radius is then 0.2725.

When the observer is on the periphery of the moon,

(17)

({_ x)2+ (__ y)2= (o.2725)2. (18)

Occultation can be utilized in two ways. If the

observer's position (longitude and latitude) is exactly

known, he will _be on the rim of the moon whenever the above

equation is satisfied. _ Thus Qne can determine when the

occultation will take place. On the other hand, from the

observed and calculated occultation, the position of the

observing station can be determined.

*The derivation "Of (17) is the same as tha_ of (_). The

x and y axes .i_ Fig. 15 correspond to the K and _ vectors

on t_e tangent plane Of Fig. 8. The angles h, 6 and

_' (not shown) qn Fig. 15 correspond to angles _0(,.

60 and 6 on Fig. 8 respectively.

I
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as the central meridlan which has hour angle Hom2asured

from Greenwich zero. At time T O , the center of the moon

passes through the central meridian at the point (0, ,Yo )

on the x - y plane. After an increment of time _t,

the center of the moon will be at

"AtX = X

Y = Yo + _At, (16)

where x and _ are the rates of change of the moon along _

the x and y directions. Given H O, T O , TO' _' and _, one

can compute the position of the center of the moon at

any, tlme.

Fig. 15
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Orbit Determination

by

Professor Paul Herget
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Orbit Determination°

I • The Method of Laplace.

A o The Preliminary Orbit.

Figure 1.

S: the position of the sun, origin of co-ordinate

system

C: the position of the newly discovered object

E: the position of the Earth

Suppose there are three observations of a new object

made one day apart° That which is observed is

_i : (cos_i COS _i' sinai cOB _i' sinai) i = 1,2,3.

The basic equation connecting the three position vectors

in Figure 1 is

(i) r = p_- R , wherep_= F 'P= I_I

k_5



Orbit Determination.

Differentia ting,

(2)

(3)

Dotting Equation

(4)

I
2.

I

_ __+__ _ I
d-_ = dt _ _J dt d-t

I
dt-_ = dt_ _ _ z dt d-_ ' d-_t - dt-_

= , _ =_ (_r 3 i_ _ I
I

IU t on (3) by _ x dt , we get I
I-_ _ . d2D --I

:/e dt dt ] +Le* dt _ 7 I
" _#, -"_.where D x ° = 0 = P x

dt

, we haveIA d_.Dividing Equation (4) by to x dt

an equation of the form

(5) jo= A +B

From the geometry, it is also true that

(6) r 2 =j0 2 - 2_(_ " 6 _+ R2

I
I

I
I

I

I
I
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Orbit Determination° •

To find A and B in Equation (5), first consider the

Taylor series expansion fOrgo

(7) _ = _0 + /_t _ ' + (Z_ t) 2 /- ,, +0 2_ _o ""°

If we truncate the series at this point and let the origin

of time, to, be the time of the second observation,

we can state the following.

(t3 . to) (W,1) - (t I - to) (W,3)

Wo,=

t3 - tI

,, (W,3) - (w,l)1 =

W O
_3 - tl

where (W,l) =

W - W
1 o

_i - to

(W,3) = W_ - W °

and
/k

W i stands for each component of !_Di
taken separately.

W o_ and W0", therefore, give the components of

A 2 A

d_° and d-PO

_ _t-_-

The other quantities needed to calculate the values

of A and B are R and d2_

dt 2

can be found in the American Ephemeris. Topocentric

parallax corrections may have to be applied to this

value of Ro
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For short intervals of time the relation

is sufficiently accurate.

With this information, A and B in Equation (5)

can be found° Then some iteration method can be applied

to Equations (5) and (6) until _ and r converge. A

possible starting point might be to set _= A and solve

for r in (6)° This value of r gives a new value for

from (5), etCo

Once _o is found, ro is known°

Equation (2) gives the value for dro =

dT o

d_
is found in the American Ephemeris°dt

(Numerical example of thls method found in Herget, p o

23 and p o 44).

ro and _o are the constants of integration needed

to determine the orbit° If necessary, the elements of

the orbit can be found from these. (Herget, p. 47)

Bo Some Difficulties Which May Be Encountered.

io Extraneous Solutions.

!

!

i

i

i
!
I

I
I

I
I
i

I
I

I
!

I

I
!
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2-

I /L/_ ,
I

i

I

i

o

Figure 2o

The dotted curve represents the graph of Equation

(5); the solid curve, that of Equation (6).

P1 is the fictitious solution p K 0.

P_ is the position of the observer, which is also

a _o._.ion_"_ to the equations°

P3 is the real solution°

A A
" are' and _o2o The solutions made for

O|

distorted by truncating the Taylor series (7) after the

second order°

3o Zero Divisors and Small Divisors (Herget, ppo 38f)

In equation (4), we are dividing by the quantity
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nearly zero, we

d_ o If this quantity is zero or

d_tnot have a determinant equation.

The derivative of a unit vector is always perpen-

dicular to the unit vector. Therefore

If is directed toward the observer, then

exit " =Oo If the three observations lle

A

in a plane containing the earth, then _ is moving along

a great circle on the celestial sphere° This situation

implies that does not have a component out of

dt-

^ d_ A d^ d_Od2^the plane determined by _ and o Again _ x _ = O.

ILl
If r varies in such a way that at one time Ir>_l

and at some time laterlrl _ IRI , then the path of the

object on the sky will show an inflection point as the

sun "moves" from the convex to the concave side of the

path° At this inflection point, there is no solution to

the equations°

If the path of the object exhibits relatively slow

curvature, that is, if the deviation of the path from a

great circle is small, then

x dt dt 2
is very small, proportional to the
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area of the spherical triangle Joining the points of the

three observations° Dividing by a small quantity will
inject serious errors into the solution.

One could apply L'H_pital's Rule from the Differential

Calculus to Equation (4), but practically speaking this
is not usually done°

If the three observations lie on a great circle, then

the three observations are not linearly independent.
One might Use these observations to determine an orbit

needing only fair arbitrary constants°

The difficulty of slow curvature may be avoided

by allowing a longer time interval between observations.

However, as _t increases, the rapid convergence of the

Taylor series (7) becomes challenged.

Co Another Approach to the Problem.

Consider the following equation expressing _ as a

vector sum of ro and _dr° = _o o
dt

(8) ri = fi ro + gi _o

(8a) _i _i = Ri = fi (_o_o - Ro ) + gi _o _Uslng Eq. (1 )_

The following set of mutually orthogonal vectors are

available from the observations.
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_= (cos_cos_, cosJsin_, sin _ )
A

A = (-sln_<, cos _d, , 0 )
A
D = ( -sinc_cos_, - slno _sin_, + coso_)

/k

If we dot Equation (8a) first by _I and then by D i and

re-arrange terms, we get the following two equations.

• /kA n

_o + gi Ai 5o = fi o " A - i " AI

A

(°o + gl Di " r¢o = fi o " Di i " DI

Each of these two equations contains four unknowns, _ o

_o ° If we have two observations, (9) and (i0) glve us

four equations in four unknowns°

2_
i + ,CAt )3 ro

_ + ...
r o

--_ + .oo
r o

and

fl and gi are obtained from the Taylor expansion of _ about

too
I

°= ro + At ro + ro + + ''"

"' ro
Recalling

r°- r°_ I

d ro ro -ro
- = 3---_ _o - _-=_

dt t = to ro to- I
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A possible method of solving for these quantities

is to guess an ro_ giving an initial fi and gi" Sub-

stitution of these values into equations (9) and (i0)

yield first approximations tO_o and _o" From (i),

_o implies ro o These values of ro and _o (Vo = ro)

can be used to find better approximations to fl and gi"

There is a distinction to be made between the

method described in Section A and that in Section C.

In (A), the dynamical conditions of the problem were

exactly satisfied [Equation (3)] , while the geometrical

conditions employing the observations were only approxi-

mately satisfied in the Taylor series (7) for _.

In the second approach, fi and gi' which represent

the dynamical conditions, are approximated, while the

geometry at the observations is exactly represented

in (9)and (i0).

A

Do Method of Solution When _ and_ Are Known.

With the use of radar, it is now possible to
A

determine _ as well as _ o As an illustration of the

method used to determine ro and Vo from the complete

vector _ , we whall consider observations made by the

Bermuda radar equipment used in the Mercury Project.

There is a 20 second interval after the second

stage of the Atlas releases the capsule when it must be

decided whether or not the capsule can continue in the

orbit it now has° Observations are made every 0oi

291
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second during this interval, giving a total of 200

observations. The epoch of time, to , is taken to be the

half-way point of the total 20 second interval.

is°

The equation used to relate observations to unknowns

(ll) _i - (_t)22ro3 + t2r__ot3

E+At - +

R© is the vector from the center of the Earth to the

observer. _is the vector from the observer to the

capsule (the observed quantity).

The local coordinate system of the observer is

changing slowly during this interval of time. Since

_ is measured relative to the local coordinate system,

corrections are made to reduce each measurement of eleva-

tion, azimuth, and range to one frame of reference_

It is assumed that during this interval ro " 5o = O.

P o is known and therefore ro is knowno This allows

us to determine the coefficients of ro and 5o .

With 200 observations, we have 600 equations, 200

equations for each of the components of ro and 5 o .

I
I
I
l

I
I

I
I
I

I

I
I

I
I

I
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i The form of the equations is:

I A x i + B x i = R e + _xi i = 1,2,3

xi x I = x

I
X 3 -

I This allows us to solve for _o and _o and thus

determine the orbit,

I IIo The Gausslan Method of Orbit Determination.

I A o Outline of the Method.

An important difference between the method of

I Gauss and that of Laplace (section I.A) has to do with

what force function one assumes. In the method of

I Laplace, where substitution for d2 _

I is needed, one could substitute

_r_ _ +F ,

I where F is any function called for by the problem. The

Gausslan method assumes elliptic motion, F _- 0 .

I

I • _

I

I igure 3.

, iI

I
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Since elliptic motion takes place in a plane, we

can say

(12) r2 = Cl rl + c3 r3

If cI + c3 = io0, the position of the object at

r2 would be on the chord joining rl to _3" Since the

path is curved, cI + c3_I.0.

Using equations (i) and (12) we can write

A

(13) Cl_1_1 - _2e2 + c3P3 _3= Cl_l- _2+ c3_3

If we dot equation (13) first by (_2 x (03) and
A

then by (_ 1 x /'02 ) we obtain the following two expressions

I

I
I

(14)

2 /02 x 3 + c3 3 (02 x

(15) c3 3 _l x _3 = Cl 1 _ 1x _

R2 - 1 x + c3 R3 _l x _ 2

If (91 (02 x (03 = 0, which implies _3 P1 x ('02 = 0,

then we experience the same indeterminacy found in the

Laplacian method.

Assuming the equations are not indeterminate, proceed

by operating on equation (12). Cross equation (12) by

I
I
I

I
I

I

I
I
I
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A A

r3 and dot by R. R is the unit vector perpendicular to

the plane of the orbit°

i This gives A

r2 x r3 " R r2 r_ sin @23
(16)

i Cl .....rl x r3 ° _ rl r3 sin @13

I

I

I

I

I
I
I
I

I
I

I
I

Equation (16) will serve as the definition of [ri,rj, ]

which is in effect the area of the triangle between
\,

ri and rj. (See Figure 3.)

Then, if we define (ri,rj) as the area of the sector
m

of the ellipse between r i and rj , we can establish a

new quantity _lJ"

_iJ = area of sector _(ri'r_)
area of triangle -_i,r_

From (16_ we can therefore write

_13 (rR'r3)

Cl = (ri'r3_ _2,3

From Kepler's Law of Areas for elliptic motion,

which states that the radius vector sweeps out equal

areas in equal intervals of time, we can also say

(r2,r 3) (t 3 - t2)

'(rl,r3 ) = (t 3 - tl)

Therefore,

(17) Cl (t,_-t21 _3
= (t3- tl)' q23
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Similarly

(18)
(t2- tl)

°3 : (t3 - tl_ _12

Clearly, if we can find the _ _s, we will know c I

and C3o From equations (14) and (15) we can get_l

and#O3o These give r2o We can then find v2 from some

formula such as equation (8) in section (I.C.) and therefore

we have calculated the orbit.

B. The Development of the _So

Let us define the quantities f and g by the following.

(Herget, beginning at po 54)

|
2g = Ej-E i E is the eccentric anomaly •

2f = vj-v i v is the true anomaly

From the formulas for elliptic motion,

(19)

(2o)

ri + rj = 2a - ae (cos Ej+cos El)

= 2a sin2g + 2 _ cos f cos g.

k(t - ti) = 2g - e(sin Ej - sin El)

= 2g - sin 2g + a cos f cos g

Now define the quantities _, m, and _ by

_2 = 2(ri rj + ri " rJ)

= 4 ri rj cos2f

= 2(r i rj + x i xj + Yi YJ + zi zj)

Kepler' s Equation 1

e

I

I
I
i

I
I
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I
I
I

I
I
I

l

I
I

I

I
I
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2
(21) m

[k(t,j - ti)_ 2

_3

I +2_ =

or

r i + r_

(22) _ =
r i + rj -

2_

Consider a quantity

x = sin 2 (1 g)

From equation (19)

a = _(_ +x)

s in2g

and from (20) and (21)

k(tj - ti) = (2g - sin 2g)a 3/2 + (2 _rir j'

This implies

(2_ sin 2g) (E + x) 3/2 ÷ (& + x) ½ = + m

s in3g

From this last formula, we have

2

(23) _ + x = m__

and therefore

15.

1

cos f s_n g aw
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(24)

where

2

X(x) = C_g _ sin 2g

sin3g

16.

Expanding X(x)
"D

2g - (2g- _el +
x(x):

(g _ _ + .°°)3

= _+ ooo

g3 + oo°

..°)

tells us that the constant term in the expansion of X(x)

is 4/3°

From the definition of x,

dx 1

dg 2
sin g.

Differentiating X(x )

dX
sin3g _ + 3 sin2g cos g X = 2 - 2cos 2g = 4 sin2g,

we get

dX 4 - 3 cos _ X
dg sin g

If we write the following

dX _ dX dg = 8 - 6 cos g X _ 4 - 311-2x ) X
dx dg dx sin2g 2x l-x )

I

I

I
I

I
I

I
I
I

I
I

I
I

I
I

I
I

I
I
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we obtain

(25) (2x - 2x2) dX - 4 - 3(1 - 2x) X
dx

Assume X can be expanded in a series of the form

X (x) = _. An xn
n = O

Then,

dX _ _ n An xn-Ihx
n = 1

Substituting these forms into equation (25) and equating

coefficients of powers of x n , we obtain the following

recurrence relation°

2n +4

An = 2n + 3 An - 1

Ao = 4/3 ,from a previous argument.

Therefore,

(26)
4 4 ° 6 4.6.8 x 2

x(x) = y + y y x + y _- 7 +

Recall that = sin2(_), where 2g =Ej - E i .

1 1 A E If mE is small, x is alsoTherefore, g = _ .

small and the convergence of X(x) is rapid.

The equatiors(23) and (24) can be solved for _ in an

iterative manner° A possible starting point is to set

= Io0. Then find m 2 and _ from (21) and (22). Equation (23)

gives x which in turn gives a new value of _ from (24).
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The following is an outline of a FORTRANprogram

to compute X(x).

Initialize X = 4.0/3.0

PoT. = 4.0/3.0

EN = 4.0

D =3.0

P.T. = previous term

EN = numerator

D = demoninator

--_ EN = EN + 2o0

D = D+ 2.0

PoT. = £.T. * (EN/D) * x

X=X+PoTo

Test PoT. against a tolerance.

When X is carried as far as necessary, one can go on to

compute a new value of _ . This continues until

convergence of equations (23) and (24), using (21) and

(22).

Co Determining the Orbit

Assume now that n observations have been made.

The method followed here is a new version of the variation

of geocentric distances. _I and_n are guessed and then
/ /

allowed to change.

/%

Look at equation (13), modified to let_i_i stand

for any of the middle observations.

A ,,_ A

Cl_l - _i_i + Cn?nfn : Cl R1 - Ri + CnRn
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We wish "Go consider the effect of small changes a?l ,

and A#o n on this equation° Including these effects,
A

and dotting the equation by Ai, we obtain

+c,.+ _/o---7A,p_+_?nl

_c-----kA/o1 +ajo_

A

A

Collecting terms

(27) {lel+ _pi °Ai + apl

_Cl ^ _-Ia_l

+----q °A + ("o
n _n n i _n i

RI ° A n Rn ° A _n
_Pn c_Pn

= Cl RI " A -Ri Rn " _

Terms of order _ 2 are neglected°

_nAi]"^n ""

_l ° A
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A second equation is obtained by replacing

in (27)°

A A

Ai by D i

The method is described for use on a computer.

List each observation with its corresponding Julian

date and R vector. (R may need to be corrected for

topocentric parallax). Read in the last observation

first and the first observation second. Then guess a

value for _l and_n. Also guess an initial value of

A

With this el and _n' the machine computes _in'

cI and Cno

A

The remaining _i are now read in one at a time, with

all of the bracketed terms in equation (27) being evaluated

each time° The partials of c are evaluated by considering

_ . _ +/_ yields two slightlyP1 _/_ and @ n 1 -

different values of cI and cn from those given by _l"

Call these values Cl+, Cl , Cn+, and Cn .

Then

Cl+ - Cl_ _ cI
n

2A 3el

Cn+ - Cn_ _ cn

2Z_ _)P
l



Orbit Determination° 21.

Similarly, _n -+_ will give different values of c1

and cn .

l+ - Cl_ _ c 1

2±

Cn+ - Cn_ _ c n

2A

With these partials we have two equations of the form

1 i

4nl

in two unknowns __Z_P]and A _n" If there are

there are n - £ pairs of such equations.

squares solution will give results provided

%A _ A

I _ 0 oY_D _ D

n observations

A least

If this value of the determinant is read out along with

the values ofZ_1,__ andZ_n, then the value of the

solution can be Judged_ If they are good, then continue

to compute the final orbit with these final values of

1 and _n o If they are not good, continue the above process.
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In this solution, you are assuming that the guessed

values of _i and _n are giving you the correct orbit.
A

This orbit will determine for you a _ i based only on the

values of _i and _ n" The observed _i _ used in the form
A

of Ai and _i measure the error you are making in assuming

_I and _n are correct.

Once you are satisfied with a _i and _n' you can

compute rn' rl' ro (where t = to is some epoch you have

chosen).

VO"

The following equations can be used to compute

rn = fn ro + gn To

_i = fl _o + gl To

Therefore

rn - rl + (fl - fn ) ro

gn - gl

k(tl - to) _ k(t - t )

where gl = _ ; gn - n o

/
i0 _ on

fl =

1 - 2 [k (t O - tl) ] 2

i0 i0

fn =

1 - 2 [k(t n - to) ]

ro
Ofl on

2

(Herget, po 57 bottom).



Orbit Determination o 23°

Look carefully at the residuals from the solutions

for _l__ and _ _n" Those from the first and last obser-

vations will be zero° If a pattern appears in the remaining

reslduals_ it may be possible to juggle the figures to

get a better fit_

IIl. Improvement of the Orbit(without perturbations).

There are many methods which can be used to improve

the preliminary orbit, which is found by methods discussed

in Sections I and IIo After a large number of observations

have accumulated_ one is in a position to apply corrections.

The orbit is a conic section and one can apply corrections

either to its elements (a, e, i, etCo) or to the initial

position and velocity vectors at some time, to . It is also

useful to have formulae which correct an orbit which is not

a conic sec ÷'__on_ but is perturbed° These formulae will be

discussed In Section IVo

Ao Corrections from a Small Change in Initial Conditions.

The technique to be used is that of undetermined

differential variations (_ro and _5o) of the initial

conditions (to and go)O Then at to we have

to" = ro +

: go + Vo

as yet unknown.

, where _ro and JSo are

From equation (8), r = fro + g go'

we can write the first variational equation,
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(28) = rS o+ +°of +&

This can also be expressed in matrix form,
@

(29)

Sy

Z_

=-_x 8x
_qYo

Az
_X 0

_z
• o • • ,

Dz
• • • a-_o'

_o
_Yo

Sz o

!

_x o

_Yo
!

Z O _

! !

The notation to be used is To = (x o , Yo ' Zo )"

The plan is to express f and g in terms of variables

in which they are easily differentiated and then change

variables to those ultimately required by the problem•

We shall use the following expressions in the

development°

12 °C(ro ° ro ) = ro ° °<ro = ro oCro = XooCXo + Yo c3Y_ + Zo °CZo

! _(_o ° To) - z2 - _ cS(Vo2) =

+ Z o _ Z o

!

c_(9o" :_o)= S(Do)= Xo_5_o

!

X 0 _X 0

!

+ Yo _Yo

J ! _Z 0+ Xo _Xo + Yo _Yo + Zo -

I l !

+ Yo _Yo

!

+ Z o _Z o

aos
_ .., . .
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Let A E = E - E o o

Then, let

and

Therefore

c_F : F oga +_a Gd_E
a

1
ga : _ aga +_2- oosAE$ a_

The quantity f, may be written

F
f = 1 ---

r o

= _ o ar o r o
*O

To find _a_ consider the energy integral (the

unit of time being chosen such that /y = io0).

2
i 2

a - r o - Vo

__. 2 _r o + ,._{ 2 )
a = --'-'2-- _'Vo

r o

To eliminate _/kE, we use two separate expressions

for go

309
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g = k(t - to) - a 3/2

3 I k(t - to) -

_g = - 2 [ a

26.

g=Gr +FD oo

°1
Therefore,

-_q-__A_ : G _ r + aL _a F _D
o _ a-"2 + -'_ o

where

3k(t-t o) - g - G ro
L=

r

The previous development is based on the presentation of

Bower.

We now have expressions for _f and _g in terms of

to" To' r and _o' _Vo ° The complete expressions are

found in Herget, ppo 74 ffo (See equations ( (6, 6)) and

((6, I0)) and recall that these are written in Cracovians).

The equation to be solved for the unknowns _ to'

_Vo is ((6, 8)) (Herget, p. 75). It shall be derived

now° In what follows, all quantities are assumed to be

in the equatorial system.

ale
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_Z

I

........... -_ I

.... iiii I

I 27.

_Y
I

I
I

I

/"Plo_e o¢ E_ua*or

Figure 4.

From, F =_ - R , we get

I (30) Sx = S_ = =

A
D

(Herget, po 73_ Equation ((6,3)))o

I !
A_

d_, _, and _p are observed minus computed

(0 - c) residuals.

If we pre-multiply equation (30) first by _, then
A

D and then _, we obtain the following.

(31)

A

(0 - C)

(0 - c)

(0- c)
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Such residuals exist for each observation. We wish

to correct the orbit in such a way that _(0 - c) are

made as small, nearly zero, as possible.

From (30) _r =_ = _ (observed) - _ (computed).

By definition, it is true that

°_ (observed) = 0 = AD " _(observed).

Therefore _° _ = _" _ = _° [_ (observed) -

= - _° _ (computed)

= - _" [r (computed) + R]

(computed I

We can therefore rewrite (31) as

(32)

A

- A ° (r + R) = cos(_fl J.-

?

P

(0-c)

(0 - C)

The third relation is not used since in most cases _ is

not observed directly° Equations (32) allow us to compute

the residuals for each observation. To tie these results

to our expressions for _ro and _o, recall that (31)

can be written in matrix form:

{ 1(33) p D_ A J

_';_ _: 312.
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!
Substituting for _r, from t29) we obtain one method

for computing the variations°

<34) # t__._ _x
0

_Z

_x o

J

_x

o

o_Z
_Zo_

Xo_
 oI:
-.o]

This is equation ((6,8)) as it appears in Herget, po 750

(In the book it is written in Cracovians.)

Bo Method of Solving System (34)°

With several observations available, we have

enough information to perform a least squares solution

to system(34)o

Each equation will be of the form

(35)
a x I + b _2 + c x 3 + d x 4 + e x 5 + f x 6 = m

where x I = 6X O, .... , X6 = _z O

The following elimination method is suggested for

computational work° The solutions and probable error

are found in one process°

From (35), set up the normal equations

o

+[a_]_= [am]
--[_m]

o o

o o

313
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When the computation is complete, we would have two

matrices A and B which appear as follows°

o ° d_ o

[o_o o
Q e

o o [e_o

_][a_[acl[a_[a_[a_]:[a_

7<_4be4{<'f4,o
[ee4}p<_: o

i 0 0 0 0 0

0 i ....

0 o i . o .

0 o . I ° .

0 o o o i .

0 .... i

A I B I C I D I E 1

B 2 C2 D 2 E 2

C3 D 3 E 3

D 4 E 4

E 5

(A) (_)

On the computer one starts with the upper half of

A (the normal equations) and with the upper half of B

(the identity matrix)° If we multiply every column o_

A by column 1 of B we obtain Row 7 of Ao Then, dividing

every member of row 7 in A by [a_ , we obtain row 7 in

B<,

I
I

I
U

For example, A I = _ ' BI = [a_' etc.
JL

We now multiply every column in A by column 2 of B.

This gives row 8 of A o

For example,

• iI + A I +C

etc o I

_.-_.,,._ i 4
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f I

Dividing row 8 of A by [bblJ we obtain row 8 of B°

B 2 = _ , etc o

This process continues until the whole of matrices

A and B are computed°

31o

The lower half of A gives the solutions for X l, ... ,

x6, starting with

x6 = fm_

We then compute the quantities,

A 2 = B I - A I B 2

A 3 = C 1 - A 1C 2 - A2 C3

A4 = D1 - A1 D2 - A2 D3 - _3 D4

A 5 = E 1 - A 1E 2 - A2 E 3 - A3 E 4 - A 4 E 5

B3 = C2

BA = D 2

B 5 = E 2

- B 2 C 3

- B 2 D 3 - B 3 D4

B 2 E 3 - B 3 E4 - B4 E 5

C 4 = D 3 - C3 D 4

C 5 = E 3 - C3 E 4 - C 4 E 5

D 5 = E 4 - D4 E 5
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From these we obtain,

Q66 =

D4 D52 I

1 C C52

Q22 1 B2 + B52 I

AI2" A2 A52

The probable errors of unit weight for each measurement

are given by

(36) p oeo x i = 0o6745 _ 2 k

I
I

I

I
r i

[v_ = the sum of the squares of the residuals°

The residuals are obtained by substituting the final

values of x i into the equations of condition (35)°

Each residual is therefore found by

and

6

• - _, _i xim_3 __=i

n 6

n

k=

" (J"i = coefficient of xi).

xi)2 where the_i may
be different for

each J.

the number of equations of condition available°

the number of unknowns, in this case, k = 6.

I
I

I
I
I
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Orbit Determination. 33.

If n = 6, the probable error will show it. This is

the case where 3 observations are used in System (33)

to correct an orbit°

If Qii_l, then the observations are favorable°

If there is a large correlation between unknowns through

the coefficients, Qii will be larger° This is the case

when the system is physically lll-condltioned.

One more note on the computation is made in the

consideration of computer space°

The lower halves of matrices A and B can

be condensed in the following manner.

[aa] [ab] [ac] [ad] [ae] [af] : [a_

CI'A3 C2'B3 C3 [dd31 lee4] " : "
DI_A4 D2'B4 D3'C4 D4 _ i° _ °

EI,A 5 E2,B 5 E3,C 5 E4,D 5 E 5 LffS] : [fmS|

where, for example, A 2 can replace B 1 as soon as it is

computed° The identity matrix need not be stored at all.

Co Corrections to Orbits Determined by Radar

(This outline illustrates the principle involved

when the observations are not weighted equally°)

Since we have established equations (29) with respect

to an equatorial system, we need to refer to another
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system, that of the observer. In this system z is directed

toward the local zenith, x toward the East point on the

horizon, and y toward the North point.

The equation corresponding to (33) becomes

A 6_ : cos H n (0 - c)
(37) [o AH

where

A

_cos H sin A

cos A

- sin H sin A

I - sin_

- sin_cos_

co @co A

coS_HsinCOSAA _Sino H I- sin H cos A cos H

cos_ o )

_represents a rotation matrix taking us from the system

of the equator to that of the observer° _is the astronom-

ical latitude and _ , the astronomical longitude, of

the observer_

Note that in this set of equations, L3_ is included

among the residuals, since_ is a basic measured quantity

along with A , the azimuth angle and H, the elevation.

The solution will proceed as before° The epoch of

time is usually taken to be that time at which the satellite

is at a minimum distance from the station.
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Involved in the solution is a quantity called the

weighting factor. Radar equipment can measure distances

better than angles, especially when the object is near

the zenith°

Suppose the r.m°So error, _ , of distance measurement

to be about i00 feet. Scaled to the radius of the earth,

u, we obtain

__ lO0 ft.
u 4000 mi.

Let_be the error of the angular measurements.

The linear effect is then_o We are obliged to

introduce a weighting factor into the equations

2
(p )2

If all equations in (37) involving angular measurements

are multiplied by this value, then we have given unit

weight to the distance measurements and we can expect

the errors in each component of the equations to be

approximately equal° As A and H are given less and less

weight, their probable errors decrease°

IVo Orbit Correction with Perturbations

Ao Form of the Equations

In this section, we consider deviations from

motion in a conic section. Many of the previous methods

can be applied, where the equations of two body motion

319
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are replaced by

d2 _ r
+_--_ (_, r, c t)

dt _ r__r- , •

o

In planetary motions, _ is absent from F , but in

artificial satellite motion with drag (for example),
c

r is present° The quantity C is a constant parameter

of the problem, a small quantity.

Let x i = x, y, z , where i = 1,2,3.

Then, consider the partials of xi with respect to any

quantity, q, which is not a function of time. Then,

_ _. D _x. + _Fi _xJ + 9Fi 3C

q J l_xJ _ q 3_ 8 q _ C 9q

I

The variation of the F i, i = 1,2,3, with respect

to the quantity C is included for purposes of determining

an improved value of C in correction° Then, we associate

with q the quantities

Xj = Xo' Yo' Zo j = 1,2,3

! 1 !

_k = Xo " No ' Zo k = 1,2,3

the initial conditions.

I

32 0
I

I
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Define

_x i

wij : _ Xj

and

_X

Wik = i

D vk

These w's express the partial differential coefficients

of the variation of r with the initial conditions. At

this time one could note the similarity of this development

with that in Section III_,A. Now equation (28) has added

to it a quantity 6(_ R dtdt).

From the w_s, we can write

(38)

d 2

-

Z (++'-,

_ik = _V k

xiI _ D _i

3 xj ] 3 xj

DFi Jl
Wnj + _ _i

The order of differentiation can be changed in (38)

since Xj is independent of time. C does not appear in

(38) since Xj is independent of C. We can, however,

J_- /:
, -+ ; ._"

+.S.,p.,4
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establish the following equation containing c.

(39) ., d2 _x i 3_i I
Wic = _dt_ _ = "3c

n xn Wnc + _ Wnc + _ c

Equations (38) and (39) can be numerically integrated to

give wij, Wik, and Wic o The initial conditions are:

for _ *_ Wll = io0 , wij = 0°0 for i@ j

w22 = I°0

w33 = loO wij = 0.0

for Wik : _Ii = io0 Wik = 0.0

_22 = io0

W33 = lo0 _ik = 0°0

for Wic : Wic = 0o0

*ic = 0°0

for i _ k

We have now established a method for computing

in a form similar to (29)° We have

6x

8v

6c

(4o) _ =
x1

° ° _ c
o •

wij o Wik o _x 2

(3x3) ° (3x3) " --_
o o

o ° _x 3

° ° _ C
° o

i

I

I

I

I
I

I

I
|
I

!
I

_r¸.... _ .
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After one has computed a perturbed orbit, one can

put the expression (40) for r into equation (33) and

apply corrections to a perturbed orbit° If one does

not wish to include a correction for c, this part is

easily eliminated from the equation.

Bo The Satellites of Jupiter

The equations of motion for a satellite, with

Jupiter as origin, can be written as

d2 _ m4 k2 9 Me
I (41) dt ff - r--3 +

I
m 4 : mass of Jupiter

I Mm_e _ mass of Saturn: mass of Sun

k2 [9 0 - 9

l o

radius vector from Jupiter to the Satellite

radius vector from Jupiter to the Sun

: radius vector from Jupiter to Saturn

I

I

I

distance from Sun to Satellite

distance from Saturn to Satellite

device of Enckeo

To determine the orbit, we first make use of this

The bracketed terms in (41) are differences

32 3
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of very nearly equal quantities. To avoid this problem,

Define q by the relation

Z_2e re ° _ - r2/2

r_ = l - 2qe = i - 2 2
0 r o

Define, f, by

fq = 1 - (1 - 2q) -3/2

Therefore,

It follows that

e = 1
_ee = (I - 2q e) -3/2

and

q2 + °, ° ]

- (fq)e

II3z..r_ = (1 -2q_ )-3/2

Then (41) can be written

= - m4 k2 _3
JJ

• 2

= 1 - (fq)t_ "

Me k2

r T [(fq)e re +[i -

®
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Orbit Determination.
41.

The units of the astronomical unit, mass of the sun, and

ephemeris time can be used.

Many methods of numerical integration can be applied

to calculate this orbit. Cowell's method directly integrates

the coordinates. Encke's method finds the quantity _ i'

where

x i = x i (ellipse) + _i"

After numerical integration, one can combine equation

(40) with the residuals into the form of (33) for purposes

of orbit improvement.

With F = (FI,F2,F3) taken as the right hand side of

equation (41), we get the following expressions for some

of the partials used in the calculations of Wik and wij.

k2 [_ (_ __)2]

_, _ o+_ + _ + _j .....

[similar expression
+ _3

etc.
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Note that

F i D F i 3F i
-- _T" -- _T

Dx _y Oz
=0

since the velocity does not appear in the equations°

It is sometimes convenient to use

F i _ F i

m 4 _ instead of 8 m 4 °

_m 4 is obtained as a ratio _m4
m 4 °

In this case,

Vo Orbit Correction Using Elliptic Elements°

Ao Rectangular Coordinates

It is possible to obtain a set of orbital elements

from _he initial position and velocity vectors°

,,
oR

Figure 5°

I

I
I

I

I
I

I
I
I

I
I

I
I
I

I

I

I
I
I
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Orbit Determination° 43.

A set of elements might be

a o°

e:

i:

M o:

semi major axis

eccentricity

inclination

argument of perihelion

longitude of ascending node

mean anomaly at epoch time, to

As before, the effects of unknown differential

variations of the initial conditions are considered.

These variations will be represented by

_M o, _e, _a/a, _i, _J, _

Replace _i, _J, _ by the rotation vector

_= (_\_x' _y' _z ) where each component

represents a rotation about its corresponding axis

(x,y, or Z)o Based on the method of Eckert and

Brouwer, the work is done out in full in Herget, pp. 82 f.

From considerations developed in the text, it is found

that

_ = _V_ _ + i _;M°
n

+ (Hr + K _--)6e

+ (r + m _)6-aaa
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H and K are functions of e and E, the eccentric anomaly°

m 3 k (t ) a -3/2= ,_- _ tO

This coefficient of_a_ coming from the variation of the

mean motion with _ a, increases with time° Therefore

a is better determined as time goes Ono

_x _ =q(_yZ -_zy ) + _(_zX-_ z) +i(_xy -_ x)x y

This leads to the following expression for_r (Herget, po83)o

(43) 6÷ = o
-Z

Y

z -y x /n Hx + K x /n x+mx /n

0 x y_/n HN + K y_/n y+my_/n

o-_X 0 z°/n H + k z_/n z+mz_/n
Z

om^l

As before_ this expression is substituted into equation

(33) az_d a least squares solution gives values for the

variation of the elements°

One difficulty with this development arises in the

case of a nearly circular orbit in the x,y plane° In

this case_ z _ = 0 and _ is very nearly perpendicular

to _o This implies

y_+ x

The third and fourth rows of the matrix in (43) are

proportional and the equations are indeterminanto This

necessitates a different formulation°

:: " $28
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Orbit Determination. 45.

B. Rectangular Coordinates of the Orbit.

The vectors _ and _ lie in the orbit plane,

directed toward perihelion. R is perpendicular to the

orbital plane. The three vectors form a mutually orthogonal,

right handed system of vectors.

Then, choose the following set of variational elements,

x I = _m o + _s

x 2 = _p

x3 = 6q

x4 = e_s

x 5 = _e

x 6 = _ a/a

A A

where _ s is a rotation about R, _p about P, and _q
A

about Q.

Symbolically, denote _5 by

(44)

A
R, and

j] " _: C i X'llil i = 1,2,3

x21 J = 1,...,6

a i

i i

o i

L_j
A

It is necessary to define another set of axes, r,

in order to calculate the cij o

_:_ 329
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A

r is a time dependent vector directed along r.
A

R is again the vector perpendicular to the orbital plane,

6

U =

A

RxF
r

Therefore,

= P a(cosE - e) + Q b sin E

__ A A
r - P a sin E + Q b cosE

m m

n n 1 - e cosE

A a 2
A Q (cosE - e) - P Jl-e sin E
U =

i - e cosE

2
A _ ea
r ° - sin E

n r

b = a _l-e 2

Using methods similar to those in section A, we can find

o

6_x _ ° _ = 0o Therefore, c12 = c13= 0 and the

contribution of this term to Cl4 is zero°

F oA r
u = _- x 4 o Therefore, c22 =

r
and the contribution of this term to c24 is

c2B = o

°

A

6_x _ ° R = b sin E x 2 - a(cosE - e) x 3 •

Therefore, c32 = b sin E, c33 = -a(cosE -e) , c34 = 0o

Similar work ultimately yields the following set of

expressions :

; ',-: 330
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Cl4 = -r sinE

l Cll = -e Cl4

l Cl5 = Hr + K Cll _
Cl6 = r + m Cll _H, k,

2 _ as iz
l c21 = _±-e-= r-ec24

2 2__. =[ r- a--_l- e I The e in
I _4 [e er ] can be r

a igebra i

I
c25 = K c21

I c26 = m c21

I c31 = c35 = c36 = 0

Upon substitution of this matrix into

gets IZ _ I 1 Ill !I! 1

I _ _____ x_
i _ ,_ R _' __ x

a Fos o\
I i_ coo_oj

\ o o _/

I [R] =/Px Qx Rx_ ' _R] is derived

of known angles

I _y _ _

I \_z_z_z/

47.

and m are the same

in Section V, A

the denominator

removed with some

algebraic manipulation.

(33) one

= os6_

A_

anomaly

completely in terms

in Herget, pp. 49 f.

_,_,"._ - 3 3 1-
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° serve to rotate coordinates from r, u, R

to an equatorial frame of reference.

One eliminates _ from the equations by ignoring

in the first matrix.

When the solution is complete, _i, _CO,

are found by

and _

i = coscO o _p - sin co o _q

<_-_: sin OOo 6 p + cos _oo 6
sin i

_ : _ s - cosi_
When i is small, _is poorly determined.

When e is small, _ s is poorly determined.

Co Special Elements for Small e and i.

Trouble with small eccentricity can be avoided

by choosing axes not related to perihelion.

L

/

Figure 6.

33,_
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The point D.P. (departure point) and its associated

vector _ lie in the orbit plane and define an origin
A

of angles. S is restricted to motion perpendicular ,_ _,

to the plane of the orbit when its variations are calcu-
A A

lated. T is 90 ° from S in the orbit plane in the direction
A A

of motion. S x T =R.

Define

= angle from D.P. to perihelion

u = f +a9 = angle from D.P. to _ .

Corresponding to KeplerUs Equation, let

u = (M +_ ) = (E +_)

= _ + no(t-t o)= _° (x_ Y co_)
X = e_osdO, Y = • sinO_

_=E +oD

- e sin

Then

I r cos u = cos_ - X + Y(X sln_ - Y cos_)

I a i +_i _ X2 _ y2

= s o+
a 1 +'_1 - X 2 - y2

with
A A

= r cos u S + r sin u T

e=-_X 2 + y2
A

p = XS +YT

2+y 2

(E+_o) -w ]

I
I
I
I
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one can again find the components of the [clj ] matrix

in _ro For example,

x _ : r sin u R (_s)- r cos u R

implies c31 = r sin u , c32 = - r cos u .

The variational elements are_

4uo, c_ala°
_,6TT, &x, 6x,

D@ Elliptic Elements with Perturbations.

use°

Define

!
I

I

I
I

_ x _:__ o I

I

elliptic orbit even if the elements were constant and

-_- represents the variation of allconstants even if
_t

the motion of the particle were frozen fixed.

where _- represents the motion of a particle in an
_t

and G with M are a convenient set of elements to

I

I

In operator notation, define

d

I

+_ I
I

334
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For example,

51.

I da _a ___t _ 8ad-T= _ + = ; 9-_ = o

I (45) aT = + 8t = = _ ; = 0

Equation (45) says that perturbations cannot instantaneously

perturb the radius vector° They have a future but not

an immediate influence when they start acting.

(46) _= + =-7+

_-_'= -7 ; 8 t=

Therefore, from (46), it is seen that perturbations have

an immediate effect on the velocity vector.

Now look at the orbital elements.

(4Z) d8 _.. = _ x 8__ +_._x _ = _ x __--W=

Formula (47) gives the first variation of v_--

and _° If we dot (47) by _,

" = " _xF=ru

in angular momentum.

" F = magnitude of change

Dotting (47) by Ar gives

r " = 0

The interpretation of this equation is that it is never

_gf 3.35
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possible for c to be changed in such a way that it is no

longer perpendicular to r. That is, any change in the

orbit plane must occur perpendicular to r and therefore

can be expressed as an instantaneous rotation about the

radius vector°

u 8t =ux

From this equation it is obvious that if F lies in the

orbit plane, it will not shift the plane at all.

For the variation of G, one writes I

For purposes of notation,

I

=K--_ " I

To find the variation of M, consider first the

variation of a° From the energy integral, i

_t

and

= 3__k_._j_-

,336
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i Then,

I dm _ _m +_m _ + _mo

_-_w _v =- _-

I Therefore,

5mo ' n
I M = mo +J-_- _ dt +/[ no + / _ dt] dt =

I mo + AM + no(t-to)+ _ - _ak r_ ° F dtdt

I where

| "
I If the eccentricity Is small, there will be difficulty

A Sm
in the calculation of Q and ___9_o . (See an article

I by Herget, Astronomical 5 t
Journal 57_

I A possible way to avoid this deficiency is to go

I back to the set of elements defined in Section V, C .

Start with

| _u o
U = U + n_(t-t_) +l _-_-%--dt + _[ c_nt dtdt

0 I'-('-.-_' " .2 0 _' """ 0 "-h

I X = X° + j [ L R "_-_] (_" T)+ Ic' (' T)Jdt

l x+coou
v = _ ...... "5

I Y = Yo +/(-JR" _-I (v S)- 'c I (F S) dt

,.. .:,

33t
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Letting Q represent a finite rotatlon about _, _,

from position at to to the instantaneous position, we •

|can write

= u° + 1 + Q2 _ x uo + _ x (_ x uo)

A A |where U represents _ and To

_= _ _dt I

and

= _ _ (_+ 9o)

VIo The Parabolic Orbit.

A o Parameters Defined.

Consider the relation

(49) r2 dv = k_-p dt I

from which Kepler _s equation is derived@

M = E - • sinE°

As e--->l; M--@E3/e _.+ .... The relation is cubic.

This implies the need to redefine Kepler's equation for

e_ io0o

For a hyperbola, e_l°0,

M = v(t-T) = -F + e sinh F o (Herget, p° 34).

I

I
I

I
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For the parabola, e = 1.0, the following trans-

formation is used. (Herget, p. 32).

Define q = p/2 , p = semi-latus rectum.

Then r = P = ?-q

1 + e cos f 1 + cos f

f_
= q sec 2 _ q (i+ tan 2 _)

where f = true anomaly.

Substitution into equation (49), gives

k dt

_q3/2 = sec2 f/2 (l+tan2f/2) d(½f)

Integrating, from T to the variable upper limit, t,

gives

k(t-J)
= tan(½f) + ½ tan3C½f) --q312

B. Position Determination - Gauss: for Nearby Parabolic

Orbit. (Herget, pp. 35 ff).

Define

a=_l+9 e
lO

(50) A 15 (E - sinE) = b tan2(½w)
= 9E + sinE

cC tan ½w = tan ½f

l+9e



|
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k(t-T) _ 1 3 I I

(51) Ba_q3/2 - tan ½w + _ tan _w

r = q D(I + tan2f/2) I

(52) r cosf = q D(l-tan2f/2) I

r slnf = q D(2 tan f/2) I

Therefore, B,C, and D can all be written as functions of

A o When A = 0, B = C = D = I. Tables of values of B, I

C, D for a given value of A are found in the Appendix

of the text, for elliptic and hyperbolic cases. I

One may find the solution by starting with B = 1 in

(51)o This gives w which in turn yields a wa,l_e_£or A' .in I

<50). From the tables, this A gives a new value for B, etCo I

One can also find other orbital quantities from the

relations in (52). I

Co Orbit Determination - Lambert (Herget, pp. 65 ff). I

Define I

2g = E i - Ej = c - d

2h=c +d I

and cosh = e c°s( "El 2+ Ej )

Then ri + rj = 2a(l - cosg cosh)

340

= a (2-cosc - cosd)

I

I
I

I

I
I
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i For the vector S = ri - rJ (the

I
I

I

57.

chord Joining any _wo

positions in the orbit) we have

S 2 = 4a 2 (l-cosg cosh) 2 - 4a 2 (cosg-cosh) 2

the minus sign in the second half of the right hand side

is missing in the text ] .

I S 2 = (2a sing slnh) 2
a2(cosd - cosc) 2

r i + rj + S = 4 sln2(½c)

153)
,, , r i + rj - S = 4 sin2(_d)

Kepler's equation gives the dynamical conditions, in the

form

I
I
I

I
I

II
I

II

= 2g - 2 sing cosh

= (C - sinc) - (d - slnd)

Then

6k(tj _ tl) = _ (c - slnc ) )B/2,;in3 (_.) (4a sln2(½c )

d-s ind )3/2

-_ ksin3(½d)) (4a sln2(½d)

(54) or 6k(tj -ti) = Q(c) [ri+rj+S 3/2 -Q(d) [ri+r j - S] 3/2

This equation can be expanded (Herget, p. 66) into a series.

Then taking the limit as a---,_o, one gets Euler's equation

(first derived by Newton).

.% f"
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Equations (53) and (54) represent the geometrical

and dynamical conditions of the orbit. Recall the equation

of Gausses method,

(55) Cl _l- _2 + c3 _3 = Cl_l- R2 + c3R3 = 9 . I
Define

_2 x 9 = $.

A /_ A
W x _2 = u

A _ A

Then V ' _p x u = 0

A
Dot (55) by _0 2 x u .

A

(_2 is taken as the epoch time).

Then, cI p1 (_I • #2 x ^ p "u) +c 3 3 2xG) =0

Theref°re _3 = M el

A oel(P1 _2 x _I
M=

°3(_3"_2 _ _

where

and is perfectly rigorous.

If the c_s are known, this determines M.

is found In Herget, pp. 67 f.

The development

I

I

I

I

I

I

I

I
One important difficulty is overcome when a parabolic

orbit is determined. Since e = l, there remain only 5

unknowns to be calculated. Therefore, 3 observations,

even if they lle on a great circle, are sufficient to

determine the orbit.

I

I

I

...... 342
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Do Differential Corrections to Parabolic Orbit.

From previous considerations, it is known that

A A
= q P(I - tan 2 f/2) + 2q Q tan f/2

A

-_ = 2q Q _ 2q _ tan f/2
r _- q3/ (l+tan 2 f/2)

The elements of the orbit can be specified by

q, T, _, _ where e = 1. Therefore we can

use the following set of differential variations.

k_T, _q/q o _e = 0 .

With respect to an equatorial frame of reference, using

equations analagous to those in Section V, we obtain

= 0 z -y -x x - _ k(t-T) x _x

-z 0 +x -y_ y- _ k(t-T) y' _W/y

y --X
0 -z z- 3 k(t-T) z 6 l_

Z

g -- kST

_q/q

m

The inclusion of _ e, letting a parabola go into

an ellipse or hyperbola, is discussed in an article

by Paul Herget, Astronomical Journal_ 48, 105, (1940).
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Calculus of Variations. •

Io Introduction.

The calculus of variations andoptimum control theory,

along with certain associated computational methods, will

be presented in parallel format to show the basic simi-

larities in spite of what may superficially seem to be

glaring differences° The two theories together form one

theory_ with separate vocabularies arising from usage

current to its era of development.

Consider the following problem in classical calculus

of variatlons, the well known bead on the frlctionless

wire falling under the influence of gravity or brachisto-

chrone_

k_ 4,

/

Fig. 1

Find the path of least time between points 1 and 2 for a

bead of mass m sliding along the wire under the influence

of gravity alone. The time required for descent is

._-;,3 4 ?



Calculus of Variations. 2.

where the last integral is written for a curve y=y(x),

Xl_X_X2o Restated_ of all arcs Joining the points 1

and '2_ find the arc for which T=min°

Consider now the modern brachistOchrone problem,

that of finding the path of least time between two points

for a rocket under the influence of gravity and a thrust

force with variable direction but wlth constant magnitude.

/

, J

X

Fig. 2

l
I
I
I

I
I

I
I

An additional constraint is imposed: The slope of the

optimal path is to have fixed values at 1 and 2. This is

a problem in optimum control theory. Mathematically for-

mulated in terms of the variables shown in Fig. 2, for a

rocket of mass l:

I
I
I
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Calculus of Variations. .

The differential equations are M = F cos u

= F sin U-go

The end conditions are x(0), y(O), _(0), _(0)_

x(_),y(T),_(T),_(T)J
!

and the problem is to make T a mlnlm_nn.

fixed,

(1.2)

This control problem is, in fact, the classically

formulated Problem of Mayor. One speaks of the variables

x_y,y as the state variables, and of the function u(t)

as the control variable. We wish to choose u(t) so that

we go from point 1 to point 2 in the least time.

Let us rewrite the last problem in a more convenient

form° Let

z 2 x3 4-x =x, x =y_ =_:; x =y. (1.3)

Then the problem is: Differential equations

xl=x3, x2=x4, xB=F cos u, x4=F sin u-g, with xi(O) fixed,

xi(T) fixed (i=1,2,3,4); T--min. (1.4)

This type of problem can also be written in the form

of the general Problem of Bolza:

Given _i = fi(t_x,u), (i=l,...,n), a set of differential

or algebraic equations, find among the class of arcs satis-

fying some end point conditions, say xi(O) fixed, and per-

haps xi(T) on a line or surface in x i space, the functions

i
x (t) and the control u(t), 0<t_T, for which



Calculus of Variations. .

fTg(t) + f(t,x,u)dt = min. (1.5)

0

It is to be understood that the symbols x and u represent

vectors with, in the case of x, n components_

I

I
I

I
Among the topics we could consider regarding are

these problems_

1. Properties of solutions,

2. Construction of solutions,

3. Existence of solutions,

4. Sufficiency conditions.

In this series of lectures we will consider only Topic l,

which includes complete discussions of the necessary con-

ditions which must be satisfied by solutions of the above-

formulated problems.

I
I
I
I

I

II. Minimum of a Function of n Variables°

Before studying the problem of minimizing a functional

such as (1.1), let us consider the problem of minimizing

a function of n variables. As an example, consider

I

I
I

f(x_y) = mlno

The first order necessary conditions that must be satisfied I

are

_f (21) |
f_ = O_ f_ = O, where, for example, fx =-_--x' etc.;

and the second order test is I

t _ _. 3SO
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Calculus of Variations.

fxxh 2 + 2fxyhk + fyyk 2 _ Oo

e

(2.2)

Of course, these conditions guarantee only that a point

is a local minimum. Since there is no global test for

the absolute minimum, we usually must find all the points

satisfying (2.1) and (2.2) and then test to ascertain the

absolute minimum.

In the more general case of a function of n variables,

f(x l_x2,x 3,.o.,xn), we write the necessary conditions

analogous to (2.1) and (2.2) as

f (%) = o
x i

f (Xo)hihJ _ 0
xiX j

i -- i, 2, o.., n

for all h,

(2.3)

which must be satisfied for all points x 0 which are minima.

In (2.3), the usual summation convention has been adopted.

(2o3)ican be interpreted as the condition ihat grad f=Oo

To see this, let

_(t) = f(x 0 + th) _ f(Xo) = #(0)

if x 0 Is a minimum point. Thus _'(0)=0 and _"(0)_0

for such a point, a condition that must be true for all h.

Thus it follows that

0 = $'(0) = f'(x,h) = fxi(X O)h i,
(2.4)

which is identical to (2.3) 1 . (2.4) is also sometimes

called the differential of f at x O, the first variation

of f at x 0 and the dlrectlonal derlvative of f at x 0 in



Calculus of Variations. o

the direction h.

dition on _(t),

is obtained from the latter con-

d2f

0 _ _" =,f"(Xo,h) = d-_ (xO + th) t=O = fxlxJ(Xo)hihJ"

As an example, let us find the shortest distance from

a point P, say (3,4), to the circle centered, at the origin,

radius Io

P(3,_)

X

Minimize [(xl-3) 2

1 [(xi_3)2fo(X)=

Fig. 3

1

+ (x2-4)2] _," or simply

+ (x2_4)2]

subject to the constraint

_(x_=½[_-(x__(_I_>o,

where the inequality constraint has been imposed for

generality. Computing the directional derivative,

". 7.

35_
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Calculus of Variations.

+ 4h2)--ko

fl(xo,h) = -3(3h I + 4h 2) _-- kl,

F

we observe the relation

.

4
ko - 3 kl = o, (2.5)

which is the "multiplier rule" for this very simple case.

We note in this example that inside the circle

fl_0, while fl_0 outside the circle. Now (2.5) requires

that k 0 and k I are both positive, both negative, or both

vanished. Thus if f0(XO) is a minimum, Ko_O; hence

kl_O@ Calling K the vector with components k_ (_=0,1),

and K the class of inadmissible vectors, i.e.,_all

such that ko_O, kl____0, the multiplier rule (2.5) ca_be

restated in a disguised form:

No k in K is in K o

This is the form of the multiplier rule found in modern

texts such as Pontryagin [l] *.

One further example is the problem of finding the

shortest distance between the circle, Fig. 3, and a point

P which is constrained to lie on or above the llne

3x 3 + 4x *" - 25 = 0. The mathematical formulation is

= l[(xl x 3 2 _ x4 2] =fo(X) _ - ) + (x 2 ) mln

subject to

*Numbers in square brackets refer to Bibliography at the
end of the paper.



Calculus of Variations. 8.

= _(x l

r2(x) = 3._3 + 4x_ - 2.5 _ o.

look at all vectors K = (kl,k2,k3),To solve this problem, we

where k% = f_(x h), with h an arbitrary vector. Here

x = tx ,x , x )_ x 0 = (3/5,4/5,3,4) is the known solution.

is k_ such that kl_O, k_O, and ko____O. This can be

seen by considering how the functions fl and f2 change as

the point P and the terminal point at the circle move,

as in the previous example. For this case,

ko _(Xo_h)= _[[3(h_ _ h3) + 4(h2 _ h4)]= 5

kI = f_(_O,_) = -(3h z + 4h2)

I
k 2 = f2(xo,h) = (3h I + 4h2).

Thus _he multiplier rule is slmp]y

ko 4 kl h

4 fl 4

if we write F = fo - _ - _ f2' then the multiplier rule is I

A 4 k2 O,F_(_o,_) = ko - y kI - y =

which is equivalent to

F = O
i

X

Exercise:

at Xoo

1 [(x I _ x3)2 + (x 2 _ x4)2] = mlnSolve fo =

with constraints



Calculus of Variations. 9.

I f2(x) = x3 + x4 - 7 _ 0

= 1 )2 (x2)2]_>fl(X) [I- (xI o

f3(x) = x 3 + 2x 4 - ii _ O.

Let us consider the theory of minima of functions

of n variables in more detail now that we have an idea of

what must be observed, in vlew of the simple examples

given above. Because every problem that is to be solved

numerically must be dlscretized, i.e., reduced to a prob-

lem given in terms of functions of n variables, it is

important to have a good grasp of the theory before pro-

ceeding to more advanced topics.

For the function f(x) = f(xl,x 2,...,x n), the level

surfaces are those for which f(x) = constant. As we know,

the vector normal to a level surface, i.e., the vector

in the direction of greatest rate of change of f, is
__f

grad f and has the components fxj----_ x (J=!,...,n).

The rate of change in any other direction h = (hl,h2,...,h n)

is then grad f'h or

• d f(Xo+th) Igrad f h _ f'(xo,h) = d-t t=O

f_-I h I _ f

xl ix0 i + _ x2 h2+ + _-_xf n I h n• • •

x 0 x 0

i i 2 2 ,x_+th n "where Xo+th _ (x0+th ,x0+th ,... )

v. _ .',': 355



Calculus of Variations. I0.

Thus we write f prime,

f_(xo_h ) = f i(Xo)h i = grad f'h = (grad f,h),
X

as the directional derivative of f in the direction ho

If the level curve is as shown in Fig. 4, and assuming

grad _ O, then for h I , f'(xo,h)_O, for h 2, f'(xo,h)_O;

and for h3_ f'(xo,h)=O, since grad f is normal to the

level surface.

Fig. 4

The directional derivative can be modified by specl-

fylng h to lie tangent to some curve x(t) that intersects

the curve f(x)=C_ i.e., we require that x(O)=x O, _(O)=h.

Then

° I
f'(xo,h ) = _--_- f(x(t)) t=O

= fxi(Xo) i(o),

where xi(O) has replaced h i .

The economy of the notation introduced here enables

.... ,..'._ 3 5_



Calculus of Variations. ii.

us to write Taylor's Theorem as follows:

For one variable f(x) = f(x0) + f'(x0) (x-x 0) +

and

½ f"(xo) (X-Xo)2+ ...,

1 ,, )h 2
f(xo+h ) = f(Xo) + f'(xo)h +_ f (x 0 + ....

For n variables we write Taylor's Theorem as

f(Xo+h)= f(xo) + f'(xo,h)+ ½ f"(xo,h)+ ...,

where f' (Xo,h) = f ihl
X

f"(Xo,h) = fxixjhih j •

Suppose that x 0 is the solution of the problem

f(x) = mino

How do the level surfaces look near x0? From the expansion

f(x) = f(x 0) + ½ f"(x0,x-x 0) + .o. = constant,

since f'(x 0) = 0o In two dimensions,

f(x_y)= f(Xo,yo) + f_(X-Xo)2+ 2fx,y(X-_o) (y-yo)+

fyy(y-y0 )2 = constant.

Truncation of the series at the second order terms shows

:"_: " 35"7



Calculus of Variations. 12.

that near the minlmum polnt the level surfaces are ellipses.

For a problem with constraints, the classical pro-

cedure is to introduce Lagrange multipliers, e.g., in the

problem

f(x) = mln

subject to g(x) = O.

Form the function F(x) = f(x) -

such that

F i(x0 ) = grad F Xo O,
X

We will choose

where x 0 is the solution point. There Is a unique

provided grad g _ Oo To see this graphically, consider

Fig. 5. It Is clear that In order for a solution to exist,

the curves fCx) = f(x O) and g(x) = 0 must not cross but

must be tangent at the solution point, for only in that

case is it possible to choose a _ so that

grad f = /_ grad go

X )

--o

Fig. 5

-__ _ 3 58



Calculus of Variations. 13.

In the above problem we can accept either _0 or

_0o However, for a problem with an inequality constraint,

say

f(x) = mln

g(x) > o,

with solution x0, it can be shown by similar graphical

arguments that in order for grad F = grad f - _ grad g = 0,

must be non-negative.

To summarize, we state the following without proof:

Theorem: For the problem

f(x) = mln

and Case I:

or Case II:

or Case III:

gz(X)= o
%(x) = o
gl(x)= o
%(x)>_o
gl(x)_<o
%(_)_>o,

if x 0 is a solution, i.e., gl(x0) = 0, g2(x0) = 0, then

there exist multipliers _l and _2 such that, when we set

= r +  191 +  292'

Fxi = grad F = 0 at x0°

u,,_" :" 359



Calculus of Variations. 14.

For Case II:

for Case III:

These results will now be interpreted in terms of the

vectors K and K introduced earlier. If we write

k 0 = f_ (x0_h)

kI --g_(_o,h)
k 2 = g_(xo,h),

then for kl>__O and k2__O, we must have ko__O.

Equivalent to the above Theorem is the following:

Theo rem:

Let K be all vectors _ = (k0,kl,k 2) and let

be all vectors k = (k0,kl,k2)such that

k0_0, _l__ 0s and k2___0o

Then no vector k in K is in K°

More generally, for the problem

f(x.) = rain

subject to g (x) = 0

gfi (x)c_ > o

(0( = i, ..., m')

(,_ = m'+l, ..., m),

and if x 0 is a solution, i.e.,

g_ (xo) = o

, (xo) > o

((_ = I, ..., m') |

(,D m")' = m'+l, ...,

(%_" = m"+l, ..., m), I

•. $60



Calculus of Variations. 15.

then we have the multiplier rule:

There exist multipliers A_0, AI, ..., A m such that

l) _, _Oand

2) _,, = Oo
3) Th_function F = _0 f - _g_ (y=l,...,m)

has the property that grad F=O at x_. _If the matrix

(_xO) ) ,m"a xi (0"=1,... )

has the rank m", then _0_0 and can be chosen _0=i.

If so chosen, the multipliers are unique.

III. Classical Calculus o__fVarlations.

Let us now return to classical theory and derive the

necessary conditions for a minimum in a general form.

Problem (1.1), the brachlstochrone problem, can be written

J(y) = dx = rain. (3.I)

xI

Where:_we now write y: y(x), Xl<X<X 2, [xl,Y(Xl) ] ,

__|x2'Y(X2) | are held fast, and unessential constants have

been ignored. Another source of problems is that of the

minimization of the area of a surface of revolution, the

generator of which passes through any two points i and 2,

Fig. 6.

_:! 361



Calculus of Variations. I

7

Fig. 6

X

16.

The functional to be minimized is

J(y) = fx227_yd_ =,;x22_y_l+y,2

Jx I x I

dx = mln, (3.2)

where the factor 2_ may be dropped, since it is unim-

portant. A broad spectrum of typical problems is covered

by the following forms of functlonals:

= r_f----X2y_Vl_y,2dx = rainJ(Y)

Jx I

(r is real)

J(y) = /X2(y '2 - y2)dx = min

Jx I

and

x 2
J(y) =f _dx = rain.

Jx I

In the general form, the fixed end point problem is written:

Determine Y : yCx), x I _ x _ x2, with

Ix l, Y(Xl) ], [x 2, Y(X2) ] held fast such that
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J(y) -- , y(x) y (x) a_ = mino
JX 1

17.

If the minimizing arc is YO:

then we have the

yo(X), xI <___x __<x2,

Main Theorem:
l) f - y'fy, is continuous along YO and

d (f_y,f ) = f on (3 3)
d-_ y ' x YO;

fy, is continuous along Y0 and

df ,=f on (34)
y y YO'

2)
which are the Euler equations, and

For admissible arcs with x, y(x), y'(x)

in the region of definition of f(X,Y,Y'), R

E(x,Yo(X),y_(x),Y')_ O, (3.5)

where E(x,y,y',Y') = f(x,y,Y') -

f(x,y,y') - (Y'-y')fy,(X,y,y').

(3.5) is the Welerstrass Condition.

Before proceeding with the proof of the above Theorem,

let us consider a few examples.

2 2

If f = y' -y , then fy, -- 2y', i.e., there can be no

broken corners on Yo'v Since fx=O, we have the condition

from i) above

f _ y,fy ,2 2,=-y - y = constant,
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and since f =-2y, the Euler equation is
Y

y" + y = 0,

which has the solution

y = a cos x + b sin x.

If f = y2 l_V_-_, r , i
= Y y .

fY' _l+y ,2

r 1

f - y'fy -
, - y _--l+y, 2

The Euler equation is then integrated once to give a

conservation principle :

I
I

I
= constant°

Exercise: Show in the above example that for r=l,

x-a
y = b cosh--. b

1
Discuss the cases r=_, r=-l.

In terms of the variables introduced in II., the

problem and its associated Main Theorem are written

x: x(t) tO _ t _ t 1

[t O , x(t0)l ' It l, x(tl)] fixed

I

I

I

I

:_'-;, S @4



Calculus of Variations.

t 1

J(x) = / [t x(t) _(t)]dt = mln
tO '

19.

Xo: Xo(t), to _ t _ t1

Main Theorem :

is the minimizing arc.

i) f - xfl is continuous along x 0 and

ddt (f - xf_) = ft on Xo; (3.6)

f_ is continuous along x 0 and

d f_ = f on x 0 anddt x
(3.7)

2) E(t, x0(t), _0(t), X) _ 0 (3.8)

for all (t, x(t), _;(t)) in R, where

E(t,x,x,X) = f(t,x,X) - f(t,x,_) -

(X-_)f_(t,x,_).

It is easy to give a graphical interpretation of the

Weierstrass condition. Let Z = f(y'), holding x and y

fixed. In the z-y' plane, Fig. 7, at the point y'0,z0 =

f(Y'0 )' draw the indicatrix z-z 0 = fy,(Y'o )(Y'-y'0 )' i.e.,

the tangent to the curve at that point. We see that

f(Y') --_ f(Y'o ) + (Y'-y'0)fy!(y'O). Thus the Weierstrass

condition is interpreted as the condition that the curve

z = f(y') lles everywhere above the indicatrix in the

neighborhood of the mlnlmum y O.
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Z_

20.

l

>y

Flg. 7

I

o- fr,_r')(Y'- t'"_I
I

' i
i

Before giving the proof of the Main Theorem, we must

make some qualitative definitions.

Weak Nel6hborhood: For a given Interval (Xl_X_X2),

an arc x,y(x),y' (x) is said to lle in a weak neighborhood

of another arc x,Y0(x),y_(x), if y(x) and y'(x) differ

little from Yo(X) and y_(x) in the interval.

Strong Nelghborhopd: For a given interval (Xl_X_X2),

an arc x,y(x),y'(x) is said to lle in a strong neighborhood

of another arc x,Y0(x),y_(x), if y(x) differs little

from Y0(X). The Euler equations are derived using the

concept of a weak neighborhood; the Weierstrass condition

is based on the concept of a strong neighborhood.

Let us prove the Main Theorem in terms of variables

used in the second statement of it, (3.6), (3.7) and (3.8).

I

I
I

I
I

I
I
I

Let the function

h: h(t), t o < t < t I

, _o
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Calculus of Variations. 21.

be an admissible (weak) variation, i.e., h(t0)=O, h(tl)=0,

so that the function

x0+_h: x0(t) + _h(t), tO _ t _ tI

has the same end points as Xo(t). _ is an arbitrary,

small number. We write

t1

@(6 ) = J(x0+gh) = _ f(t,x0(t) + gh(t) _0(t) +
tO.2

Eh(t))dt.

In order that x 0 be a minimizing arc,

(_'(0) = 0 and @"(0) _ O.

Hence,

o -- 9, (o) -- J, (xo, h) = ftt_(fxh + f.h')dt and
j x

t1

0 = _"(0) = J"(x O, h) = wltO2_)(t'h'i_)dt"

(3.lO)

(3.i1)

where 2_ = fxxhh + 2fx_hh ÷ f_n_.

(3.10) is analogous to the directional derivative intro-
J

duced in II. Let us rewrite (3.10) as

.t 1

J'(x O, h) = ] [M(t)h(t)+ N(t)h(t)]dtt O
(3.12)

We now state a

.. 36,"f_"-.



Calculus of Variations. 22.

Fundamental Lemma :

If M(t) and N(t) are piecewise continuous, then

t 1

J to(Mh + Nh)dt = 0 for all admissible h,

if and only if N(t) = J oM(S)ds + N(tO).
t

_t

Proof: Let q(t)= J oM(S)ds, i.e., _(t)= M(t), and put
t

"t

h(t) = ! [ 1 ' '
tO N(r)- q(r)dr- C(t-t O) i.e. h(t O) = O. If

we choose C such that h(t') = O, then h(t) is admissible.

Let p(r) = q(r)+C, and write

h(t) = ./_oIN(r) - p(r)Idr.

Then p(r) = q(r) = M(r),

= N-p,

and finally,

_t I _t I It IJ to(M(t)h + N(t)h)dt = J to(Ph + ph)dt = ph t' = O.
Q.E .D.

The proof of (3.6) and (3.7) of the Main Theorem

follows directly from the Lemma.

To prove the Weierstrass condition (3.8), we refer to

Fig. 8. We will admit strong variations of the form shown,

calling the variation X(t), to_t_to+ _(6 _0) and

X(t+t), to+_<t<tl. Note that X(t,O) = Xo(t).

3 @S
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23.

t

Fig. 8

For the arc with corners,

ft°J(Xo) = _(0) _ (e-) = tof(t, Xo(t) , _o(t)dt +

/to+ _ .t 1
f(t, X(t), X(t))dt + /

J t o _ to+

f(t, X(t+_), _((t+_))dt.

Hence,

0 __ _(0) = f(to, Xo(to) , X) - f(t, Xo(t), Xo(t)) +

.t 1
f

J to(fxX£ + f_ )dt.

it
By the Fundamental Lemma, the integral becomes fkxh, to

Note that. x.. (tl,o) = 0 ana xg (to,O) = _-_o(t).
Thus we have the Welerstrass condition

3Be
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0 _ _'(0) = f(to, Xo(to), X) - f(t O, Xo(to), 9-o(to)) -

(_C- £o(to))f£(t, Xo, _0).

Transversality conditions arise in variational prob-

lems in which one or both end points are not fixed. For

example, in finding the shortest distance between a point

P in a plane and a curve Yl(X) in the same plane, one end

point is fixed at P and the other is variable. It is clear

that the minimal curve YO will be the straight llne which

is normal to the curve and passes through P, Fig. 9. It

will have the direction (1,Y'l), and the end-polnt con-

dition is

(i, y'l)__ dx, dy I.

(3.13) is called the transversality (normality) condition.

/

P

_0

/

Z,(_')
k<

Fig. 9

For the general problem

IXlf(x, y, y')dx = mln

J= jx 0
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Calculus of Variations. 25.

with x I constrained to be on some curve Yi(X), the trans-

versality condition to be satisfied at the varlahle end

point x I is that llne with the directions

f - y'ify_, and fy_ must be perpendicular to dxdy i.

(f - y'ify_)dx + fy_dy i = 0. (3o14)

Let us prove (3.14) in complete generality in terms

of the variables used in the proof of the Weierstrass

condition.

Hence

i t ox: x (t), ___'t _ T I

it0, xi(tO)] held fastj

T, xi(T) are constrained to lie on a surface S.

The problem is

= g ,_ xl T),( ] + , X_t), x(t))dt = min.J(x)

x0(t) tO_t<T0 be the solution, and chooseLet
XO:

a one-parameter family of curves x(t, t ), tO<t<T(_ )

Joining the initial point to a point T(_ ), X(g ) =

x(T(_ ), _) on S, such that it contains the point x 0

for g=O, i.e., x(t,O) = x0, T(0) = T O . We form the

function

_t(g)J({) = gtT.[(_), X(_)] + f(t, xCt,_), £(t,t ))dt.
0

Then

_;: i 3 7.1
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dJ = dg + f(T)dT + f__(fx_X +_if_)dt,,,
(3.16)

where C g ,= x d _ and we have put g=O, d g--_---1.

(3.16) must vanish if x 0 is the minimal arc. The Euler

equations (3.6) and (3.7) must hold. Hence,

dJ = dg + fdT = 0•

Integrating fdT by parts gives

i_ t=Todg + (f_ iifli)dT + fiidXt:'_"_j = O.

If g is absent from (3.15), then we have the transversallty

co_dltlon given above. If not, then the expression in

square brackets must be equal to -dg.

Before we leave the classical theory we will discuss

briefly the theory of multiple integrals. Consider

J = _f(x, y, z, p, q)dxdy, (3.17)

where p = _z/_x and q = _z/_y. The gradient of the

functional J is

5J = _A_fz_z + fp_Zx +if_Zy)dXdy. (3.18)

If we define the inner product of the two functlons u and v,

(,i,v) = UxVx + UyVy)dXdy,
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Calculus of Variations. 27.

then the gradient is (u, _z). Suppose _ z=O on the boun-

dary C of the region R', the projection of the region

R of definition z(x,y), onto the xy plane.

2

I

//_I I
I i

7

Fig. lO

Then from (3.18), the Euler equation is

_u = _x fp +_y fq - f = 0
(3.19)

and u=O on the boundary.

Finally, let us discuss briefly functionals containing

higher derivatives:

x: x(t) to _ t < t I

t 1
t"

J(x) = 9/t Of(t' x, _, _)dt = mln,

and let x(tO), _(tO), x(tl), x(t l) be held fast. The Euler

equation, which can again be derived by means of the

directional derivatlve concept, is
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d d2
fx - d--@f_ +dt--_ f'x = O, (3.20)

and the Weierstrass condition is as before with

I
I

I

,. _)__ECt, x, x, x, fCt, x, _,:X) - fCt, x, x, M)-

(X - _)fE(t, x, i, _).

It is interesting to note howthe above problem

can be cast into the form of a control problem, as intro-

duced earlier or discussed in more detail in V. Write

1
X = X,

x2 = _, u = M. I

Then the differential equations of the process are

• l 2 _2
X = X , = U,

with xi(tO), xi(t I) given. Then we wish to find x,u

for which

t 1

J = F f(t, x I 2 u)dt
tO , x ,

min,
J

I

I
I

I
which is a "control problem".

IV. Theory of Cones.

The theory of cones in n-dimenslonal geometry is use-

ful for discussing advanced theories of the calculus of

variations. The following is a brief introduction to the

theory.

I

I
I
I

3 7.4
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If we have a vector k = (ko,kl,k2,.°.,km),__ we define

the following:

I

I
I

I

I De___ff:A Hyperplane is the plane L(k)=O where
L(k) = C_ok 0 + C_ik I + ... + C_mkm

or L(k) = _oko - llk I - .oo - /\mkm

)'o "
' - /_kz (Z=l,2,...,m).

For example, in two dimensions, a hyperplane is any line

through the origin. A hyperplane divides the m+l dimen-

sional space into two half spaces L(k)>_0 and L(k)_0.

De____f:A Ray is a vector k_O and all C(k((_O), i.e.,

all non-negative multiples of a vector.

I
I

I

I
I

De____f:A Cone K is a collection of rays.

so also is C_k, _>0.

If k is in K,

Def: A Convex Cone K is a cone such that if k and k'

are in K, so also is k+k', and C_+O('k', 0(_0, _'_0.

It is necessary that _ _I.

CX

Lemma I: If K and K are convex cones such that no k in

K is interior to K, there exists a hyperplane L(k)=0

which separates them into sets such that

I
I

I
I

_(k)> o if k is inK
L(k) < 0 if k is in K.

De___f: A Tangent Cone to a region R at a point x 0 is the

cone defined by the limiting positions of the rays through

x O, directed into R, as they approach the positions for

which they are no longer in or on the boundary of R.

375
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For example, for a smooth closed region R, the cone tangent

to R at a point x 0 on the boundary is the half space

containing R. If x 0 is interior to R, the tangent cone

is the whole space° At a boundary point of a region R

with corners, the tangent cone may be less or more than

a half space, depending on whether the corner is re.entranto

Theorem: Let X be a closed, well-beha_ed set in x-space,

x = (xl,x 2 m),.oo, , let x0 be a boundary point of X,

and let _ be the cone tangent to X at x O. Assume that

is convex and has an interior point. Let fo(X),

fl(x), ooo, fm(X) be functions on X having derivatives

f_(xo,h), f_(xo,h), .oo, fm(xo,h) at x O, and let K be all

vectors k defined by the formula

k_ = f'_ (x O, h), where h is in _, (p=o,l,...,m).

Then K is a closed convex cone.

A proof of this Theorem will not be given here.

Lemma II: If k is interior to K, there is an h interior

to _ such that ko =f_(x0,h), and there exists a curve

x(t) such that

i i
x (t) = Xo(t ).
and

fp (x(t)) - f p (x O) = t_p
x(O) = xo

and x(O) = h.

(O<t<£), i.e.,

Let us now apply some of these results to one of the

problems we considered earlier. Suppose that x 0 is a

_'" ' , 376
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Calculus of Variations. 31.

solution of

fo(X) = mln

subject to fly(x) = 0

and f_ (x) _ 0
which means

(C(=I, 2, .o.,m' )

(ji_ =m'+l, o. o,m),

ff_ (xo) = o
n v(Xo) = 0 p'=m'+l, ooojm"

f_e,,_lO)k> 0 _"=m"+l
, o o. ,m,

and let K - (ko, o..,km ), i.e., ko _0, _C(=%

_,___0, _,, arbitrary° Then no k in K is interior to K,

where K is" defined by the previous Theorem.

To see these results, we suppose the last statement

is untrue and show a contradiction. If it is untrue,

then by Lemma II,

fo(X(t)) = fo(Xo) + t_ 0 O_t< C

f_(x(t)) = fc((Xo) + tk_

,(x(t)) = f_,(Xo) + tk_, and

D,,(x(t)) = f_,,(Xo)+ tk_ ,,.

But the first equation leads to the conclusion that

fo(X(t))>fo(Xo) , because t>0, ko_O, a clear contra-

diction°

I Theorem:

exist multipliers _O___O,

If x 0 is a solution of the above problem, there

_i' °°°' _m such that

>°| 2) =o

I
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3) The function F = _0fo-_ fT has the property

that F'(x0,h)___0 for all _ i_.

Proof of 3):
!

F,(_ o, k) = /.of,o(Xo , h) - ,_7.f7 (%, h)

_-/.oko- lyky
= L(k) ._ 0 for k in K.

Proof of i) and 2):

Choose k = (-I, O, O,

__<o _>o• • e

..., O) in K. Then L(k) =

Now c'hoose k = (-l,O,...,O,k_,O,...,O) such that

there are at least m'+l zeros before k_ and at least

m+l-m" zeros after kd" Then

L(k) = -_0 - __ <-- O, m'+l _ ___< m",

where if _ is any positive number,

is any non-positive number, _=0.

O" >0, and if k(]_

V. Control Theory o

In control problems it is customary to think of the

states of the systems being controlled as being represented

by the vector

x: x(t) : (xl(t), x2(t), .o°, xq(t))

and the control by another vector

u: u(t) = (ul(t), u2(t), ..., un(t)).

'3T8
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Calculus of Variations. 33.

The process, as it takes place in time, is governed by

differential equations

.i=fix (t, x, u),

and usually starts at some initial point

[t O , xi(tO)] bi.

A given choice of u(t) gives an initial value problem for

the state

J

•i = fi = glx (t, x(t), u(t)) (t, x)

[tO , xi(tO)] = b i.

However, the problem in control theory is to determine

u(t) such that we hit some target while minimizing some-

thing, say time, fuel consumption or money.

An example of a simple control problem is to choose

u(t) such that at a fixed time T you reach xi(T) = ci in

such a way that

f_o (fj : (t),x(t),u(t))dt:mln. (5.1)

It can be seen that this problem is contained in the clas-

sical varlatlonel problem discussed in I., when T is re-

placed by tI and ui(t) is replaced by xi(t).

The problem can be modified in several ways to make

it more meaningful, but more complicated° We could add

379
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constraints of the form

lui(t)I<__c

or, say inequality constraints

(xCt, u(t)) ___ 0

¢2(t, uCt)) = o or

¢}DCt, x(t), uCt)) _ o, etc.
CZ

Let us translate the above problems into the language

and notation of Pontryagin Ill. Let

Pi(t) = f i(t, x0(t), _0(t)) (5.2)
X

and let I

u i = _i, ui(t) = _i(t).

I
We now define a new function

H(t, x, u_ p) = Pifl - f(t, x, u). (5.3) I

The minimizing arc u0,x 0 has the property that I

H(t, Xo(t), u, p(t)) _ H(t, Xo(t), Uo(t), p(t)),

i.e., H is minimized over all admissible functions u.

Hence

H i = Pi- f.i (t' x, u). I

U X

The classical Weierstrass condition comes directly from (5.4): I
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Calculus of Variations. 35.

0 _ H(t, x 0, u 0, p) -H(t, x0, u, p)

= Pi(t)u i - f(t, x0, u0) - [plu i - f(t, x 0, n)]

= f(t, x0, u) - f(t, x0, u0) - (u i - ui)f i(t, x0, u0)

= E(t, Xo, u 0, u).

At this point one can make an analogy to the theory

of Hamilton-Jacobl dynamics. If H were the Hamiltonlan,

then the Hamilton-Jacobl equations would be

Xl = Hp i = ul

Pl = -Hxl = fx I°

(5.5)

The Hamiltonlan would be defined by the definition of

H(t,x,u,p) and the equation

I

I
I
i _i = x 3, _2

!

In the classical variations theory, (5.5) are the Euler

equatlons.

Recall the modern brachistochrone problem dealt with

earlier:

4 _3 = F cos u, k4= x , = F sln u-g

with [xi(0), xIT] given, choose u such that T = mln.

_ _ _"
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This problem also fits very easily into the general con-

text of Leltman [2J, who discusses problems
of the form

x-X(t, x, y)+_ cos_

= Y(t, x, y) + _ sin

_o_/_ o<_/_<--/_m_x
G(T, x(T), y(T), _(T), 9(T), m(T)) = mln,

with an initial point given. Such a problem is called a

Problem of Mayer in classical texts.

Let us now state the necessary conditions for the

solution to the following general control problem:

x: state variable xi(t) (i=!,...,q)

uku: control variable (t) (k=l, ...,u),

where tO<t<T°

The governing differential equations are

•i fi(t )X = _ X, U .

We are given [tO,xi(tO)] fixed and xi(T) fixed, and we

wish to make

Tf

J(x) = g(T) + J tof(t, X, u)ds = _In.

Assume that Xio(t), uk(t), t°<t<To is the solution,

and define as before the function

:_"" 382
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H(t, x, u, p)= pi fi _0 f. (5.7)

Then there exist multipliers i[O___O and Pi(t), not all

zero, such that

°i = fl
x = Hpi

Pi = -H i'
X

the Euler equations, and

H(t, x0(t), u, p(t)) < H(t, x0(t), u0(t), p(t)) (5.9)

I
for all (t,x0(t),u) that are admissible. Admissibility

may be defined by constraints Of the following general form:I
I

Equation (5.9) is the Weierstrass condition for this

I problem.

The transversality condition takes the form

Aog'(T) - H(T, Xo(T),u0(T),p(T))- O, (5.10)

The analogous form of the transversality condition for

the classical approach is given in III.

Let us solve the rocket problem (modern brachisto-

chrone ) :

I H = pl x3 + p2 x4

I
+ F(p 3 cos u + P4 sin u) - p4g.
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But _H = H t = 0; therefore H = constant = hog'(T);

g(T) = T_ hence H = _0___0 along the minimal curve. Now

Pl = -H I = 0 °°" Pl = constant
x

= -H = 0 ' Po = constant
2 2 '"

X
o

P3 = -Hx3 = -Pl "" P3 is linear in t

P4 = -H 4 = -P2 '" P4 is linear in t.
X

Let _=P3' _=P4' and we see that _=0, and _=0; hence

the point (_ ,_ ) moves at a constant rate. Since we have

no constraints of the form _c_(u)___0, We must choose u

such that H-max on the minimal curve, Hu=0 on the curve.

0 = H u = F(-p 3 sin u + P4 cos u) = 0.

P4 _.Hence tan u =-- =

p3 _
The properties of the solution have been obtained without

finding an explicit solution. The solutlon says that the

thrust force F is always directed to a point that moves

on a straight llne at a constant rate, Fig. ll.

Fig. ii
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Calculus of Variations. 39.

Not all problems in control theory have solutions,

i.e., not all systems are controllable. To illustrate

the concept of controlabillty, let us suppose a problem is

governed by a set of differential equations

x i = fi(t, x, u).

We now ask whether there are functions u which can get

us from P0 to Pl"

P,

If we can get to Pl' can we get to P2' a neighboring point,

also? It might not be possible. To be explicit, consider

the geodesic problem

y: y(x) xI< x < x2

ixJ(y) = _l+y'2 dx = min.

x I

Let us introduce the function

x_-z(x) = _ ,2 dx,
3 x 0

and put y'=tan u, z'=sec u, Xl=0, x2=l. The problem is now

Y(_I)= o
z(xI) = o

Z(X 2) : fX2_o dx = min,

385
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which is a Problem of Mayer.

known a priori.

The properties

a figure.

Z

0

The solution n=constant is I

Let us assume that Y(X2)=b and Xe=l.

of the solution can be most easily shown in I

!

!

P !

_--__ _ I' I

,'
Y

Fig. 12

The llne OP represents the locus of points of Z for the

solution curve Yo(X). For any variation from the true

solution, the corresponding value of Z must be larger

than the value of Z on OP for the same set of values of

(x,y). We see that there is a hyperbolic cone of reach-

able points. The line 0£ is on the boundary of the cone.

If we draw the intersection of the cone with the plane

Xe=l, we obtain Fig. lB. Even for the simple p_oblem dis-

cussed here, there may be points z(x 2) that cannot be

reached, regardless of the control available.
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Z

41.

I
/

This lack of complete controlabillty is typical of Prob-

lems of Mayer.

Finally, let us discuss a particular case of the con-

trol problem where we have constraints of the form

lu < I.

Let the problem be to approach the origin in _,x phase

space in minimum time, subject to a control u and differen-

tial equations

•1 2
X = X

_2 = Uo

The function H = pl x2 + p2 u. We must choose u to maximize

H subject to lul_l. Carrying out the steps

= 0
Pl

P2 = -Pl

hence Pl = Cl = constant

hence P2 is linear in t,

i.e., P2 = c2-ci t° For fixed time, we will maximize H

by selecting u. It is straightforward to show that if

P2(t)>O, u=l, and if P2(t)<O, u=-l. The solution can be

written
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u = slgn(c 2 - clt)

in phase space.

\
\

I,L.= I

\

\ U_ '- - /

//

_=/

Fig. 13

Starting atj say point P1 in phase space, the trajectory

follows the curve shown. First u=-l up to point A; then

u=l to the origin° Similar remarks hold for point P2o

VIo Problem Transformations.

By means of simple transformations, we can show that

all of the above problems are, in principle, the same.

The general control problem is given in terms of

i
x: x (t) state variables

u: uk(t) control variables

tO < t < t I i=l,...,q

k=l,...,n,

subject to differential equations

3 8_
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•i = fiX (t, X, U),

43.

and the formulation may depend on other parameters

W (3_ 0"=i,...,r,

and may be constrained by conditions such as

_c_(u): o

__(u) > o
(t, UT= 0

(t,x,u) _ O, etc.

As Case (i), consider the constraint

_(t, x, u) : o (6.1)

with end points expressed parametrically as

tO = TO(w),
tI : _l(w),,

xi(t O) = xiO(w)

i 1 xilx (t) : (w).

We impose isoperemetric conditions

t1f

Jl(X) = gg"(w)_ + Jvltofg"(t' x(t), u(t))dt = O,

and we wish to make

t1

J(x) = g(w) + ftof(t, x(t), u(t))dt = mln.

If we have a problem with constraints of the form
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@(x,(t, x, u) = 0

_O(,,(t, x, u) _ 0

C___'= i, . .., m I

(_" = m'+l, ..., m,

44.

I
I

I
then to get the formulation, Case (i), we can introduce

more functions u by writing

_m,+j(t, x, u) = (un+J) 2

or

_m,+j(t, x, u) - (un+J) 2
= 0 J = i, ..., m-m',

which are Just m-m' more constraints of the desired form

_ (t,x,u) = 0. This method, however, does introduce

singularities, so caution is in order. Isoperemetric

inequalities can be similarly transformed. In principle,

Case (i) contains all problems which include inequality

constraints.

Let us discuss now the Isoperemetrlc Problem of Bolza:

i i=l, °. o,qx: x (t) tO < t < tI

with constraints _c((t,x,_) = 0
C(=l,...,m

J

_(x) = g_(t O, xCtO), t I, x(tl)) +

tof.._(t, x(t), :_(t))dt = 0

I
I

I
I
I

I
I

I
I

I

Jo(X) = g0(t 0 , x(t0), t l, x(tl)) + •

tlfo(t, x(t), _(t))dt = mln. (6.6)

to

390
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I Remarks similar to

I constraints.

i Consider, as special cases

Case (i) f_/_ 0

I Case (ii) f_ _ 0

fo -------0

I Case (iii) f _ 0o

45.

those made above hold here for inequality

the Problem of Bolza

the Problem of Mayer

the Problem of Lagrange.

(6.8)

(6.9)

We will show that all three problems are basically the

same, first showing that the functions f can be eliminated,

Joe., we can write equivalent problems involving no inte-

grals.

X"

y:

Let the problem be

xi(t )
t

yP(t) where yP(t)= ftofP dt p=O, I, . ..,p.

The differential equations are now

_c((t, x, _) = 0

#P - f p(t, x, ,¢,.) = O,

with side conditions

I (x)g T yp (t 0) O.
= + y_(t) -- 0

I
The problem reduces to a Problem of Mayer, for we now wish
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to make

Jo = go + yO(tl) = min.

This transformation does notpreserve the concept of strong

neighborhoods.

Let us consider a more general Isoperemetric Problem

of Bolza. Let the state variables be

I

I
I

I
I
I

x: xi(t), w (_ i = i, ..., q

_= i, ..., p

to < t <t I,

assuming that the state also depends on parameters w, and

with the differential equations

I
l

I

Pc((t' x, _) = O.
(6.10)

We have end conditions

ts = TSCw), xiCt s) = xiS(w), s = O, 1 (6.11)

and constraints

t 1 I

JT(x) = gy(w) + /tofy(t, x, k)dt = 0 y=l,...,r, I

(6.121
and we wish to make

t 1

J(x) = g(w) + Jftof(t, x, _)dt = mln.
(6.13)

If w appears in the Integrand of (6.12), we merely add the

39Z



I

I
I
I

I
I

I
I

I
l
I
I

I
ii

I
I

I
I

I

Calculus of Variations. 47.

new _tate variables x q+_ and the differential equations

_q+U=O. Then the integrand in the constraints corres-

ponding to (6.12) contain no terms in w _.

To see that the problem consisting of (6.5), (6.6)

and (6.7) is a special case of this, let

t O = w l, xi(t O) = w l+i, t I = w q+2, xi(t l) = w q+2+i.

The problem (6.10), (6.11), (6.12)and (6.13) is,

conversely, identical to (6.5), (6.6) and (6.7). If we

append to the set of differential equations associated

with the latter problem the following,

w_ = O, i.e., w _ = constants, the end values,

then we obtain the problem

x: xi(t), w_(t I .

Differential equations W = 0

_C( = (t, x, _),

with end conditions becoming the constraints with f_-----O,

tO - TO(w(t)) = O, xi(t O) - xiO(w(tO)) = O,

t I - Tl(w(tl)) = O, xi(t I) - xil(w(tl)) = O,

and we wish to make

t 1

J = g(w(tO))+ I f(t X,
t O 'J

_)dt = min.

393
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By similar arguments and transformations, it is pos-

sible to eliminate the constraint functions J_(x) by

transforming the variational problems to control problems.

It is straightforward, conversely, to show that the con-

trol problem is a variational problem of one of the special

types (6.7), (6°8) or (6.9). Thus, all of the special

types of problems we have formulated and discussed are

basically the same. The type of formulation one chooses

is a matter of taste.

VIIo Methods of Computation.

The method of steepest descent, or gradient method,

can be most easily discussed in terms of functions of a

finite number of variables. Let f(x) be a function of n

variables x = (x 1,x2_.oo,x n). The derivatlve of f in

the direction f is

where g = grad f

between g and h,

,_ fn')_
F r fixed , f

and e is the angle

' is greatest in the

g direction°

Recall that at the minimum point x 0 we can expand

i f,, ....f(x)= f(xo) +_ (xo, x-xo) + (7.2)

If we truncate this expression at the second order term

and set f(x) = constant, we have an equation for an

ellipsoid in xn-space. Thus, starting wlth some approxi-
a

mate value of the solution Xo, we use the concept of the

:_ _ _-39 4
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Calculus of Variations. 49°

gradient, or direction of greatest change of f, to follow

the "flow lines" from some ellipsoid f(x_) = constant to

the minimum point of f, i.e., we must solve the set of

equations

dx i i
dT = -f i = -g ° (7o3)

X

For numerical computations, (7°3) is dlscretlzed to

_x i = _gi_t

or the Iteratlve form

i
X i

4
I

= - C(gno (7.4)Xn+l n

Equation (7°4) is the Gradient Iteration Formula, and

embodies in it the Method of Steepest Descent.

An advantage of gradient methods is that they pull

the solution away,from saddle p01nts. Usually the greatest

difficulty in application is that one encounters long,

narrow ellipsoids. To overcome this difficulty, one must

apply special methods to choose C( in (7°4).

To discuss the gradient method for integrals, consider

the problem

x: x(t) (tOG t _ t l)

Lt 0, x(t0)], It l, x(tl)] held fast

t 1f

J(x) = _ (f(t) x(t) x(t))dt = mln
t O ' ,J
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We will admit corners in the minimizing arc

x0: Xo(t ) (t O _ t _ tl),

and we Will call a variation h admissible if

h: h(t) (t O _ t _ tl)

and h(t 0) = O; h(t I) = Oo Note the vectorial character

of h(t). If h is admissible, so Is C(h. If, in addition,

g is admissible, so is

_l h + _2go

We define the inner product of h and g as

t 1f-

• h = (g, h) = JIto_(t)L(t)dt. (7°5)g

Let us define

t

g(t) = JtO [f_(T, Xo(_, Xo(T)) -

(7.6)

where c is chosen so that

g(t l) = O.

Since g(t O) = O, g is an admissible variation.

g is the gradient bf J at Xo, hence

(7.7)

In fact,

I

I
I

I
I

I
I
I

I
I

I
I
I

I

I
I
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Calculus of Variations.

tI

J'(x O, h) = fto_(t)_(t)dt = g

ftwhere g(t) = fl - t0fxds - c.

• h,

51.

(7.8)

Equation (7°8) must hold where

t1

fhl_foh_t
Jt

is held fast. Note that J' (x0,h) has a maximum value

for fixed h when h=(_g.

For numerical solution of this type of problem,

we can use the concepts developed earlier for functions of

n variables, i.e., (7.4), but to use our definition of

g_ we would rewrite (7.4) as

Xn+l(t) = Xn(t) - C_gn(t)° (7.9)

For a general discussion of gradient methods, see Stein,

M°, Jnl° of Research, Nat. Bur. Stds., RP2330, V.48, 1952°

The freedom of choice of the definition of gradient

in these numerical methods is unconstrained. Suppose we

define the dot or inner product of the functions g(t), h(t)

as

1

Jtg " h = (g, h) = tog(t)hCt)dt... (7.101

For J, defined as before,
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t I

J'(x O, h) = ;tO(fxh + flh)dt.

52.

(7.11)

Integrating by parts with h taken as admlsslble, we obtain

t1

j,(xo, h)= J
(7.12)

toghdt

with

d (f_) (7.13)g = fx - d-_

We could call g in (7.13) the gradient.

(7.3), we would have to scare

x (t, s)= d
_"-W _ (f_) - fx = -g

x(tO_ s)= O, x(t I, s)= O, where x(t, O)= x O.

Analogous to

(7.14)

For example, if

l( t)f =-_x =-_
t

f. =X,
X

and we have the system

with x(tO, s) = O, x(t 1,s) = O, and x(t,O) = Xo(t). Note

that by using the gradient approach in this simple example,

we obtain a heat equation which gives the set of flow

lines of the energy integral.

Of course, the above problem of minimization could

have been handled by what Courant and Hilbert [3] call

Indirect Methods, that is, by solving the corresponding

39_
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Euler equation

= fx

subject to the two point conditions

x(tO) ; x(t I ) fixed.

In the same book, Direct Methods are discussed. For example,

if we define I,/= inf J(x) for all admissible x, the

problem is to find _ by constructing a minimizing sequence

x such that
q

Jim J(Xq)--
q--+_

On the other hand, we could approach the problem by a)

finding _, b) showing that Xq---_xO, and then c)

= lim J(Xq) _ J(Xo). The latter approach is that of

the Tonelli School in Italy, and stems from work by Weier-

strass and Hilbert.

As the first direct method, consider the following

basically Eulerian technique for obtaining a minimizing 1
sequence° Suppose the interval of interest is (tOmtit).

Divide the interval into q sub-lntervals of length

tl_t 0
h =

q

t 1

where q is some integer. Then the integral [ ^fdt can

be wrltten as a function of q variables _l,_...,_q:J

3 9 .q
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and the minimum of this function can be obtained by the

usual methods for functions of n variables. One disad-

vantage of this method is that it usually involves too

many variables.

A second direct method, which is very useful when the

side conditions are linear and the Integrand functions are

quadratic, is the Raylelgh-Ritz. The details of this

method are discussed in Courant-Hilberto

For another approach, we observe that the admissible

variation

h = x(t) - Xo(t)

with the properties

h(t O) : h(t l) : Oo

We can estimate h by choosing a complete set of functions

h1.(t), k=l_2, oo o, which vanish at tO and tl, for example,
&%.

if t0=O:

[Dkt

hk(t) = sin tl ({.Ok= k_). (7.15)

We then write

hCt) = _ C(khk(t ). (7.16)
k;1

Hence

4-D.D
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x(t) = Xo(t) + C(lhl(t) + ... +C(qhq(t) + ....

Thus

(7.17)

J(x) = F(C( I, ..o, O(q) (7.18)

if we terminate (7.17) at the qth term. Thus we again

have the problem of minimizing a function of q variables.

The effectiveness of this method depends, as does the

effectiveness of Rayleigh-Ritz, on the choice of the func-

tions hk(t).

Side conditions of the form

t 1
f-

K(x) = I (x, t)dt C
tog =J

merely impose on the resulting problem of minimizing

F(C_) conditions of the form

(C( ) = constant.
G i' C(2" o°., C(q

Iteratlve methods play a dominant role in the prob-

lem of minimizing integrals and functions of a finite

number of variables. In general, we are given the task

of finding the minimum of F(x,y,z). If we guess a set

Xo,Yo,Z 0 that is close to the answer, we will get conver-

gence of an iterative scheme, which we can approach as

follows:

i. Given Xo,Yo,Zo, minimize F(x,Yo,Z O)

2o minimize F(xl,Y,Z O)

3. minimize F(Xl,Yl,Z)

solution: x 1

solution: Yl

solution: Zl,

4 0_i

5'-:
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and so on in this Gauss-Seldel-llke procedure.

Let us define formally an Iteratlve procedure.

x 0 be an initial guess (a vector). Then we write

Xq+ 1 = Xq + C(qhq

Let

(7.19)

as our iteratlve process, hq is essentially a choice of

direction along which we go from the qth estimate to the

q+l th estimate; C(q is how far we go in that direction.

To use (7.19), we must have a program for selecting C<q

and hqo

Newton's method for finding the minimum of a function

of n variables is basically written in the form (7.19). If

C(2 F"
F(CT) = FCx +C_h) = F(x) +O:F'(x, h) +-V- (x, h),

(7.20)

truncating the Taylor Series at second order terms, then

we minimize the right hand side with respect to C( and

obtain

F' (x,h)

(_ = -F"(x,h)'

and hence we take

F' (Xq, hq)

O(q = -F"(Xq,hq)"
(7.21)

The Method of Conjugate Gradients (Hestenes, M.R., and E.

Stelfel, Jnl. of Research, Nat. Bur. Stds., RP2379, V._9,

1952) is a variant of (7.19). For a discussion of Itera-

tlve methods for linear systems, see Hayes, Nat. Bur.

40_
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Stdso, Report No. 1733, 1955.

The gradient method, as applied to the problem of mini-

mizing an integral, is discussed in RAND Report, RMI02,

1949, by M.R. Hesteneso

Let us discuss in some detail an iterative method

for finding the minimum of a function of n variables

F(x) = I x2, ,...,xn). By iterating on x, we hope to

improve this approximation of the solution by choosing a

x such that

6x = X + x = x +O(h,

i ioeo, Xq+ 1 = Xq + C(qhq.

Program forO(:

a)

b)

C_ =C( = constant. Usually if C_ is chosen too
q

large for convergence, chooseR* =t'_/2; if too

small, choose C(* = 2C(° One can also step (_

to find the value for quickest convergence.

F,(x ,hq)
_q = -_F"(Xq,hq)'

where we have added a scale factor_

(i-6 _ _ i+_). If_<l, one says he is

under-relaxlng; if _>i, over-relaxlng.

Program for hq:

a) Choose n linearly independent vectors

Ul,U2,.°.,u n.

Let hq be some combinations, say

hq = (Ul,U2,...,Un,Ul,...)°

40_
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b)

This is the usual Gauss-Seidel procedure. Any

combination of the uj can be made.

hq = -grad Fo Recall F'(x0,h) = Fx lhi = grad
F'h.

Usually we define the dot product of the two vec-

tors x,y as

Q

x y = xlYio

We could define

x " y = _gljxiYj,

a positive definite form. Then, for quick con-

vergence, we could write

_F
giJ

(grad F) i = 0xJ'

where gl,g jk = _ _, and then choose giJ so that

grad F points toward the minimum point, not normal

to F = constant as is usually the case. This

implies a particular choice of hq.

Newton's method appears in all phases of numerical

analysis° When solving the equation

s(x)= oj,

we write

QCx + 6x) = QCx)+ a'Cx)6=,

set the right hand side equal to zero, and pick

aCx)
6x =-a,lx_"

For a system of equations Gi(x ) = 0, we put

.;. _- 404
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b si 6xJ.
o --%(x + 6x) = Gi(x)+--_..

Then we put gij(x) -

matrix, and then let

59.

G i

_j, not necessarily a symmetric

_J = -gJkSk(x).

If G i = _xi' then giJ _x i_x j
is symmetric.

_F

For quadratic functions F, we choose (grad F)i = giJ _-_x j;

but if F is of an indefinite form, we may get saddle points.

Suppose we are solving a minimization problem with constraints

f(x)= min
g(x) = o.

The first necessary condition is

fx i+ _gx i=O°

By Newton's method,

f i + kg i + (f + Ag.ixJ)6xi + 6 Ag i = o,x x xix j x

and

g + _x j = 0.
gx j

To solve these equations for _x j and (5 _, we must have

fxixJ + _gxixJ gx i

gxj 0

_0,

; 40
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and then to iterate, we put

Finally, let us consider Newton's method for finding

the solution of a simple differential equation

T = 1 + y,2 - yy" = 0

with y_O

hence y"_O o

subject to y(a) = A

y(b): B

This is the catenary problem° To solve this, guess a

function y(x) to satisfy the boundary conditions, and set

T+_T = 0, ioeo,

T + 2y'_y' - _yy" - y_y" = 0

with _y(a) = O_ _y(b) = Oo

Improve on the guess by solving this linear equation for (5 y o

This method is also applicable to simple and multiple

integralso

406
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Rendezvous Problems

These talks will be roughly divided into the following topics:

1. Definitions

2. Ascent trajectories

3. Parking orbits

4. Mission analysis

5. Rendezvous in planetary travel

Definitions

The definitions of the major symbols are:

a: semi-major axis

E: eccentric anomaly

V: true anomaly

p: parameter of ellipse - semilatus rectum

T: period

i: inclination angle

_: argument of perigee

_: argument of ascending node

e: eccentricity

In terms of the quantities we will use the well-known relations:

I. r = a(l - e); pericenter distance
P

2. r = a(1 + e); apocenter distance
a

3. P = a(1 -e 2) ; semilatus rectum

4 T 27-(a3/2/c_-1/2

_= 1.407639 x lO6 ft3/sec for the Earth's gravitational con-

stant

411



Rendezvous Problems

2 7-/ I/2a-3/2
5. n = CO = m = /z& ; mean motion

6. M = n(t - 7") ; mean anomaly

7"= time at epoch.

e !

!

!
If the Earth's potential function is represented by

, Jn<_np<sin_>]
nffi2

where

P = Legendre polynomial of order n
n

L = Latitude angle,

then the first order secular perturbations in the orbital elements of

an Earth satellite in the absence of air drag are:

8. s = - J2( ) cos i rad/sec j R = equatorial radius

c----n R 2 2

._2 e2,10. _ls = _ J2 ( ) _ 1- (- 1 + 3 cos 2 i) rad/sec

= R 2
ll. _s - 3 7-/ J2 (_) cos i rad/rev.

2

12. _s = 3 7-/J2 (_) (- 1/2 + 5/2 cos 2 i) rad/rev

2 V 2' 213. Ms" 3 TFJ2 (_) _. - e (- _./4 + 3/_ cos i) rad/=v

where J2 = 1082.28 x lO16.
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Rendezvous Problems
1

Example :

For an orbit with i = 30 ° and an altitude of 300 statute miles, one

finds that

= - 0.442 °/rev. _ - 6.8 °/_ay

= 0.705 °/rev. _ 10.8 °/day

Rendezvous Phases

Rendezvous can be divided into the three phases

io

ii.

iii.

ascent of injection into transfer orbit

terminal phase

docking - contact between ferry and target vehicles.

There are a wide variety of possible types of ascent maneuvers and

a few remarks will be made concerning the characteristics of some of

the basic types of ascent maneuvers.

a. In - plane ascent:

An in - plane ascent requires that the target

vehicle travel in a compatible orbit; that is, an

orbit in which the target passes over the launch

site at least once per day. This is a severe

requirement and its practical realization will

probably require means for adjusting the orbital

period of the target vehicle.

\
F-f_roe+

Figure 1

Transfer Orbit



Rendezvous Problems 4,

b. Adjacency transfer:

The ferry is inserted into an orbit close to that of the target,

but not necessarily in the same orbital plane. The ferry transfer or-

bit is selected so that its orbit is coaltitude and has the same velo-

city as the target at the time at which the two orbits intersect. At

the time of orbit intersection, the ferry is given a velocity impulse

such that its orbit plane is made coincident with that of the target.

c. Two - impulse transfer:

The first impulse inserts the ferry into a transfer orbit such

that the apogee of the transfer occurs at the orbit of the ferry and

the timing is such that the ferry and target are simultaneously at the

apogee of the transfer orbit. When the two orbits touch, a second

velocity impulse is given to the ferry to bring it up to orbital speed

and, if necessary, change its orbital plane to coincide with that of

the target.

d. General ascent:

The ferry is injected into a general transfer orbit which is re-

quired to intersect the target on either the outgoing leg or the in-

coming leg. The timing problem for these ascents is very critical and

typical launch windows are only of about 3 minutes in duration.

e. Parking orbits:

An intermediate parking orbit greatly simplifies the timing prob-

lems for an ascent transfer traJector. The ferry is first launched in-

to a circular orbit at a lower altitude than that of the target. Be-

cause the ferry will have a shorter period of revolution, it will gain

414
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.

on the target with respect to their geocentric angles• At the proper

time, the ferry is given a velocity impulse into a transfer orbit which

will bring it into position for the final rendezvous maneuver.

Velocity Penalty for Maneuvers

a• Equal velocities, in - plane maneuvers:

Suppose that the interceptor (ferry) and the target vehicles have

the same velocity magnitude but different directions; Figure 2.

For small c_ ,

14. Av = c_v.

For a typical velocity of 25,000 ft/sec, the velocity

increment required per degree separation of the paths _--_cg6_ _/n

would be of the order __ _/'_

l_ Av = _• l--_x 25 x 103 = 436 ft/sec.

Figure 2

This is a costly maneuver as measured in units of required velocity

impulse.

b. Two - impulse maneuver: _ \Apo_7_

_o__ _._-'-------.._.._.
From Figure 2,

2 2 + 2 _ 2VIV 0 cos o<16. V2 = V I V 0

Figure 3

The velocity penalty for the plane change is
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17. _V = V I + V 2 - Vo,

for small o<, such that sin _ _ o< , 16. and 17. yield

VlVo 2
cx

18. Av = 2(v0 _ vl) .

Example :

Typical numbem at apogee are V 1 = lO x 10 B ft/sec, V 2 = 15 x 10 B, V0 =

25 x 103 ft/sec. If ci = 5.7 ° , then AV _83 ft/sec. Thus the two-

impulse maneuver is less costly than the previous case. The economy

partly comes from the fact that the velocity impulse can correct the

interceptor's speed at the same time that its orbital plane is shifted.

i

I
I

c. Dog - leg maneuvers:

Dog - leg maneuvers during thrusting may also

.ascent. or _ •

be used aurlngA_ranszer trajectories to effect an I

orbital plane shift. Thrust is made in the trans- 6 oL

verse direction by tilting the rocket thrust by an

angle _ from the vehicle's flight path. Let

AV = required increment of velocity.

It can be demonstrated that if y _ < Xo' then for

Figure 4

held constant,

xO x0

Example :

If Xo = i0 x 103 ft/sec, _V = 15 x 10 3 ft/sec, one finds that o< = 1.5

4 I_6
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Rende zvous Problems

Thus the dog - leg maneuver can change the angle of the trajectory

plane on the same order as the rocket motor gimbel angle used, and with

minor penalty on the forward acceleration.

General Direct Ascent

a. General Direct Ascent

The rendezvous window is defined as the interval of time on the

launch pad during which a rendezvous ascent can be made without an "ex-

cess" fuel penalty.

It has been established that Hobanann ' type transfers produce

minimum energy transfer. Soft - rendezvous is the situation in which

the speed and orbit direction are the same for both the interceptor

and targetvehicles. A Hohmann -

type transfer can be used if the

target is at AL at interceptor

launch (ahead of insertion point).

The intercept takes place at AR. C

The general cases occur for

the target at either BL (leading)

or CL (lagging) with the inter-

cept accomplished at the intersec-

tion points BR or CR# respectively.

One can investigate the maxi-

mum spread in angle between initial

points BL and CL which determine the

allowable launch window with a re-

striction on the available _V

capability of the interceptor.

cj% ,

4t7

Figure 5

Transfer Orbits



Rendezvous Problems .

Suppose that the total vehicle thrust

capability is

20. V L + AVR = 27,000 ft/sec.

One can show that the launch window shown

in Figure 6, is - 7.4 to 6.1 ° or roughly

13 °, which corresponds to about 3 minutes

for typical orbits. If the thrust capabili-

ty is increased to 3 x l04 ft/sec, the

I
Figure 6

Launch Windows
launch window increases to about 15 minutes.

It is thus seen that the launch window is very sensitive to the total

O

vehicle capability.

b. Indirect ascent schemes

i

I
I

I
I

i

I
I

Parking orbits can be employed to extend the launch windows from I

%
the order of minutes to hours, o

Suppose, as showninFigure 7, that _¢_/

the inclination of the target's orbital ___ Iplane is only slightly larger than the

latitude iL of the launch site. Further, I/'. I I i _,_---7iT_,F_mm

suppose that the interceptor is launched_o_ ' _ ' Orb_"

in a close orbit. That is, onlyarendevousSma_i _i<-----6:_-----_,,i / Ii

angle change is required for

Let A i denote the required difference

in the inclination of the orbital plane

It can be demonstrated that

sin iL cos i0 - sin A i I
21. cos g =

cos iL sin i0 Figure 7 I
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Rendezvous Problems

Example :

If iL = 28° (Cape Canaveral)

io _ i

30° 2° 32.6 °

30.4 2.4 36.0

31.o 3.o 39.5

Next consider two types of transfer orbits:

Case a: Transfer apogee at target height

A chasing orbit is obtained by

launching a transfer such that the

apogee is tangent to the target's

orbit. Thus the ferry or interceptor

gains on the target during each revolu-

tion until a constellation is attained

for which a single small impluse is

sufficient to effect the rendezvous.

Let: e : angular difference

: number of revolutions

required to overcome

defic lency

One can verify that

21.

22.
mv i e

V0 3 360])

.

(Gemini Program Maneuver)

Figure 8

Hohmann - type Transfer

4t9



Rendezvous Problems 0t

where V0 is the orbital speed.

Examp be :

If e = 20 °

_=I

r = 4260,

then A r = 315. This cannot be accomplished in one revloution be-

cause A r is greater than target altitude, here considered to be

BOO s.m. Therefore, let _ = 2, and then A r 158 miles and

/_V = 213 ftlsec.

Case b: Parking orbit

For an intermediary parking

orbit, 21. is modified to

_r 2 e
23.

r 3 360( _ - 314) '

Thus the basic technique in

the use of chasing or parking or-

bits is to launch the ferry any

time it is ready during the time

interval the launch site is close

to the orbital plane of the target,

• _ _ t_

Figure 9

Figure 7. From this figure and the table relating /_i and 8, this

may be in the interval of several successive orbital passes. Any

geocentric angular deficiengy that the ferry may have is made up

by use of the chasing or parking orbit. It is seen that the holding

back for subsequent addition of a rendezvous velocity increment _ VR

allows this type rendezvous to be made at substantially the same charac-

teristic velocity increment as would be involved in a direct ascent ren-

dezvous. These indirect schemes provide for launch windows up to 3-5

hours, instead of minutes.

420

I

I
I
i

I

I
I

I
I
I

I
I

I
I

I
I

I
I

I



I
I

I
I

I
I

I

I
I
I

I
I
I

i

I
..|

I
I
I

Rendezvous Problems ii.

Terminal Phase

Terminal phase starts when ferry is about 50 miles from the target.

Two types of terminal maneuvers are usually considered.

(1)

inertial space; or, maintain zero angular rate.

Proportional navigation: maintain llne-of-sight fixed in

(ii) Orbital mechanics: compute coast or-

bits of target and ferry to determine if they

intersect. If no intersection, compute required

change in ferry orbit to produce orbit inter-

section.

Figure I0

(a) Terminal Guidance

The terminal guidance equations for a va

of assumed models are given in Table 1. As an

example, consider the equations in rotating

rectangular coordinates for a model having a spherical earth, circular

target orbit, "zero-order" gravity. The equations of motion are

T

2t_. K-2_,_-
m

T
2 y

Y+ 2co_ - 3 cO y =
m

T
_°+ CO2z = _z

m

Assume no thrust, Tx = T

25.

= T = 0, then the solutions to 24. are
y z

2Yo ^_o ,
x = (x0 +-_--) + (- 3_0 + 6 CO Yo)t - 2(3y 0 - E--_-_ sin co t -

Y

2_0-_- cos cO t,



Rendezvous Problems 12.

26. y = (_Yo " 2--_) ÷ (- 3y0 + 2--_) cos uO t + -_- sin oOt, I

27. z = aI sin OOt + b I cos cO t,

!
where Xo, _(0' YO _ YO are the initial conditions.

!
The general relative motion _

seen be the ferry in these coordi- ///- ----Z_"--'IY'_'_'_ I

nates is shown in Figure 12. The L ' i_c S

ellipse is centered at the target _

and has the following parameters: _ I

28. v=-3_ o +6_Yo ! I

• ^ YO Figure 12

Xc = x0 * _ I

_o

yo= 4yo - |

a =2b .

[ Y02 x02] ½ I

Suppose that v = Yc = O; this implies that 11 I

29. Xo =2 _Oyo, _ I

which is the condition for which the x_.__[_/_i

I
orbital period of the transfer orbit

is equal to that of the target. I

Figure 13

30. Xo = 2 cO YO

cO x 0

YO-- 2

422



I

I

I
i

I

I
I

I
I

I

I
I

I

I

I
i

I

I
I

Rendezvous Problems 13.

we have the situation illustrated in Figure 13, in which the ellipse is

centered about the target.

If the target is itself in elliptical motion, it can be shown

that the same form of terminal equations apply to the relative motion.

(b) Two Impulse Terminal Phase - Orbital Mechanics Scheme

Let CO/2_ be the period

of the target and t denote the
r

time interval required to effect

a rendezvous. Figures 15 and 16

illustrate the effect of the para-

meters required for a rendezvous.

0.1 O.2

/_'

Figure l_

0 o./ 0.5- /o P

31.

Figure 15

b0 t r
R

p = 2T. _ , period ratio of the orbits,

00 = angular rate of orbit

v= _ t/Dx 0 .

Example :

If the altitude h _200 miles, 03 _ 0.00114.

For _0 = 5000 ft..: ,:

v= 5.7(_



Rendezvous Problems

If _ _ 2, v _ i0 ft/sec to complete a rendezvous in a time

t = lO minutes.
r

(1) rotating axis system

(il) inertial fixed system

I

L

3

Y

_ry _ehi_a Spac_ ?+_tic_

(c) Proportional Navigation

Y

_tat_'on I

I

_r

IK

×

rot _Jcinq _es

Let R be the line-of-sight

distance between the station and

the vehicle. For proportional

navigation, an intercept occurs if

32. _2 --2aR Figure 16

a = acceleration.

424
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One maneuver for 'braking" into

a rendezvous is shown in Figure

17. A thrust is aDolied at the

"on" line and removed at the "off"

line. The vehicle then coasts

until the "on" line is again met.

The rendezvous is then made by

'braking" in this stepwise fashion.

15.

Figure 17

Mission Analysis

Mission analysis is used for booster design, or specifying the

rocket thrust capabilities. As an example of mission design, con-

sider a comparison of two types of lunar mission profiles:

(i) direct ascent

(li) direct ascent with rendezvous in parking orbit about moon

| 32a _ _ e_Av : K
• m u

The basic rocket equation can be written as

c

I = specific impu!se _ __

Consider the vehicle configuration of Figure 18.

Apply 32a. to obtain

Figure 18



RendezvousProblems

33.

+

rap+g%

16.

where 6"mb = burn out weight of booster.

Solve for

K-1

3_._=l- 6K_==p"

The required total weight is then

3_. _-_ ÷mb (!-6)K--I 6K_

(a) Direct Ascent to Moon and Return

Oqc

The sequence is

Figure 19

(i) Land on moon by means of m3; /_V 3 is the required velocity

increment.

(ii) From the moon's surface, launch mc to Earth return, A v& is

the velocity increment.

" _ 42 I;
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Rendezvous Problems l?.

Using the preceding equations, the mass that must be used to es-

cape the Earth is

36. Me : R3 (_ + _) ; _ : R4mc : R3 (R4mc + m3)

Typical velocity increments are:

Av 3 = I0,6_0 ft/sec

AV4 = 10,330 ft/sec.

(b) Lunar Rendezvous

The mission sequence is

(i) Decelerate the vehicle into

a moon orbit; __/_V1
Figure 20

(ii) Descend to the moon with mf, ascend to rendezvous; AVdJ A Va.

(iii) Return to Earth; _V 2

One finds

37. m = R
a mf,

38. mL=R d(m+m s) =R d(R amf+ms).

It can be verified that the mass, me, that escapes from the Earth is

39. me = R12 (_ + mc).
%



Rendezvous Problems 18.

Typical velocity increments are:

_V a = 6800 ft/sec

Av d = 68oo

Av 2 = 3530

AVl+ A v2 737o.

It is interesting to compare the two types of lunar profile missions.

For a direct ascent with typical values

and

40. M = i0 m + 2.745 m
e c s

41. me = 2.435 mc + 8.96 mf + 3.81 m s

k2. mL = 5.52 mf + 2.35 ms

If m = 13,000_, mf = 3500, m = O; one finds thatC S

M = 130,000 Ibs
e

m = 64,000
e

mL = 19,000.

These figures indicate the economy of a lunar rendezvous mission

as compared to a direct ascent.

Rendezvous in Interplanetary Transfer

Rendezvous problems for interplanetary flights are exactly similar

to those already discussed except in the near vicinity of the departing

and destination planets. Figure 21 illustrates the hyperbolic escape



I

I
I

I
I
I

I
I

I

I
I
I

I

I

I

I
I

I
I

Rendezvous Problems 19.

orbit in the vicinity of the Earth.

The escape velocity is computed from

2 1
43. v2 =/_(_ + _)

or, in equivalent form / //_0jch'n_ orbit

44. vE zro+v_ ,

V0 = circular velocity at height r

V_o = hyperbolic excess velocity. _ --_--_ __c_p6

b,.5. tan_= VEv_
2

Vo

Figure 21

The t_ust required for escape ......... = ..........

and

46. T,= T -v = ½ m(2 + r2_2)- _,

47. _OD= Fr S r + Fgr c_e.

The equations of motion for a thrusting escape are

_8. _= ,S2 +/._-._.2= 'g÷
m v

mr

r6
49. r_'+ e_g = _g'7"

v = (_2 + r262)½ .



Rendezvous Problems 20.

Instead of a Hohmann transfer,

a faster orbit can be used as shown

in Figure 22. The following table

indicates the characteristics of a

minimum energy Hohmann transfer to

Mars compared to a possible fast orbit.

Figure 22

Mars Stay Time Travel Time Total Time 2 A V

Hohmann 460 days 520 days 980 days 36,600 ft/sec

Fast Orbit 30 290 320 76,000

Reference :

JoCo Houbolt, "Problems and Potentialities of Space Rendezvous,"

Astronautica Acta, Volume VII, Fasc. 5-6, 1961.
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